You can not select more than 25 topics
			Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
		
		
		
		
		
			
		
			
				
					
					
						
							173 lines
						
					
					
						
							6.6 KiB
						
					
					
				
			
		
		
	
	
							173 lines
						
					
					
						
							6.6 KiB
						
					
					
				| /* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserved.
 | |
| 
 | |
| Licensed under the Apache License, Version 2.0 (the "License");
 | |
| you may not use this file except in compliance with the License.
 | |
| You may obtain a copy of the License at
 | |
| 
 | |
|     http://www.apache.org/licenses/LICENSE-2.0
 | |
| 
 | |
| Unless required by applicable law or agreed to in writing, software
 | |
| distributed under the License is distributed on an "AS IS" BASIS,
 | |
| WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
 | |
| See the License for the specific language governing permissions and
 | |
| limitations under the License. */
 | |
| 
 | |
| #pragma once
 | |
| #include "paddle/fluid/framework/op_registry.h"
 | |
| #include "paddle/fluid/operators/strided_memcpy.h"
 | |
| 
 | |
| namespace paddle {
 | |
| namespace operators {
 | |
| 
 | |
| using Tensor = framework::Tensor;
 | |
| using LoDTensor = framework::LoDTensor;
 | |
| using LoD = framework::LoD;
 | |
| 
 | |
| template <typename T>
 | |
| LoD ConcatLoD(const std::vector<const T*> ins, const size_t level) {
 | |
|   auto out_lod = ins[0]->lod();
 | |
|   auto numLevels = ins[0]->NumLevels();
 | |
|   const size_t n = ins.size();
 | |
|   const size_t level_idx = ins[0]->NumLevels() - 1 - level;
 | |
|   for (size_t i = 1; i < n; ++i) {
 | |
|     for (size_t j = 0; j < ins[i]->lod()[level_idx].size(); ++j) {
 | |
|       out_lod[level_idx][j] += ins[i]->lod()[level_idx][j];
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   for (size_t i = level_idx; i < numLevels - 1; ++i) {
 | |
|     size_t lod_len = 1;
 | |
|     for (size_t j = 0; j < n; ++j) {
 | |
|       lod_len += ins[j]->lod()[i + 1].size() - 1;
 | |
|     }
 | |
|     out_lod[i + 1].clear();
 | |
|     out_lod[i + 1].resize(lod_len);
 | |
| 
 | |
|     size_t idx = 1;
 | |
|     for (size_t j = 0; j < ins[0]->lod()[i].size() - 1; ++j) {
 | |
|       for (size_t k = 0; k < n; ++k) {
 | |
|         for (size_t m = ins[k]->lod()[i][j]; m < ins[k]->lod()[i][j + 1]; ++m) {
 | |
|           out_lod[i + 1][idx] = out_lod[i + 1][idx - 1] +
 | |
|                                 ins[k]->lod()[i + 1][m + 1] -
 | |
|                                 ins[k]->lod()[i + 1][m];
 | |
|           idx++;
 | |
|         }
 | |
|       }
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   return out_lod;
 | |
| }
 | |
| 
 | |
| template <typename DeviceContext, typename T>
 | |
| class SequenceConcatOpKernel : public framework::OpKernel<T> {
 | |
|  public:
 | |
|   void Compute(const framework::ExecutionContext& ctx) const override {
 | |
|     auto ins = ctx.MultiInput<LoDTensor>("X");
 | |
|     auto* out = ctx.Output<LoDTensor>("Out");
 | |
|     const size_t axis = static_cast<size_t>(ctx.Attr<int>("axis"));
 | |
|     const size_t level = static_cast<size_t>(ctx.Attr<int>("level"));
 | |
|     const size_t n = ins.size();
 | |
| 
 | |
|     for (size_t i = 1; i < n; ++i) {
 | |
|       PADDLE_ENFORCE_EQ(ins[0]->NumLevels(), ins[i]->NumLevels(),
 | |
|                         "The levels of all the input LoDTensors "
 | |
|                         "should be the same.");
 | |
|       PADDLE_ENFORCE_EQ(ins[0]->dims().size(), ins[i]->dims().size(),
 | |
|                         "The dimension size of all the input LoDTensors "
 | |
|                         "should be the same.");
 | |
| 
 | |
|       const size_t dims_size = ins[i]->dims().size();
 | |
|       for (size_t j = 0; j < dims_size; ++j) {
 | |
|         if (j == axis) continue;
 | |
|         PADDLE_ENFORCE_EQ(ins[0]->dims()[j], ins[i]->dims()[j],
 | |
|                           "Except for the dimension of the specified "
 | |
|                           "axis along which all the inputs are concatenated, "
 | |
|                           "dimensions of all the other axises of the input "
 | |
|                           "LoDTensors should be the same.");
 | |
|       }
 | |
|     }
 | |
|     PADDLE_ENFORCE_GT(ins[0]->NumLevels(), level,
 | |
|                       "The levels of all the input LoDTensors "
 | |
|                       "should be greater than the specify level");
 | |
| 
 | |
|     out->mutable_data<T>(ctx.GetPlace());
 | |
|     auto out_lod = ins[0]->lod();
 | |
|     if (axis == 0) {
 | |
|       out_lod = ConcatLoD<LoDTensor>(ins, level);
 | |
|     }
 | |
|     out->set_lod(out_lod);
 | |
| 
 | |
|     const size_t level_idx = out_lod.size() - level - 1;
 | |
|     auto out_lod_level = framework::ToAbsOffset(out_lod)[level_idx];
 | |
|     for (size_t i = 0; i < out_lod_level.size() - 1; ++i) {
 | |
|       Tensor out_t = out->Slice(static_cast<int>(out_lod_level[i]),
 | |
|                                 static_cast<int>(out_lod_level[i + 1]));
 | |
|       auto out_stride = framework::stride(out_t.dims());
 | |
|       size_t offset = 0;
 | |
|       for (size_t j = 0; j < n; ++j) {
 | |
|         auto in_lod_level = framework::ToAbsOffset(ins[j]->lod())[level_idx];
 | |
|         auto in_stride = framework::stride(ins[j]->dims());
 | |
|         Tensor in_t = ins[j]->Slice(static_cast<int>(in_lod_level[i]),
 | |
|                                     static_cast<int>(in_lod_level[i + 1]));
 | |
|         size_t axis_dim = in_t.dims()[axis];
 | |
|         StridedMemcpy<T>(ctx.device_context(), in_t.data<T>(), in_stride,
 | |
|                          in_t.dims(), out_stride, out_t.data<T>() + offset);
 | |
|         offset += axis_dim * in_stride[axis];
 | |
|       }
 | |
|     }
 | |
|   }
 | |
| };
 | |
| 
 | |
| template <typename DeviceContext, typename T>
 | |
| class SequenceConcatGradOpKernel : public framework::OpKernel<T> {
 | |
|  public:
 | |
|   void Compute(const framework::ExecutionContext& ctx) const override {
 | |
|     auto ins = ctx.MultiInput<framework::LoDTensor>("X");
 | |
|     auto* out_grad =
 | |
|         ctx.Input<framework::LoDTensor>(framework::GradVarName("Out"));
 | |
|     auto x_grads =
 | |
|         ctx.MultiOutput<framework::LoDTensor>(framework::GradVarName("X"));
 | |
|     size_t axis = static_cast<size_t>(ctx.Attr<int>("axis"));
 | |
|     size_t level = static_cast<size_t>(ctx.Attr<int>("level"));
 | |
|     const size_t n = x_grads.size();
 | |
| 
 | |
|     // Set Grad(X) LoD as X
 | |
|     for (size_t i = 0; i < n; i++) {
 | |
|       x_grads[i]->set_lod(ins[i]->lod());
 | |
|       x_grads[i]->mutable_data<T>(ctx.GetPlace());
 | |
|     }
 | |
|     auto out_lod = ins[0]->lod();
 | |
|     if (axis == 0UL) {
 | |
|       out_lod = ConcatLoD<LoDTensor>(ins, level);
 | |
|     }
 | |
|     const size_t level_idx = out_lod.size() - level - 1;
 | |
|     auto out_lod_level = framework::ToAbsOffset(out_lod)[level_idx];
 | |
| 
 | |
|     for (size_t i = 0; i < out_lod_level.size() - 1; ++i) {
 | |
|       Tensor out_grad_t =
 | |
|           out_grad->Slice(static_cast<int>(out_lod_level[i]),
 | |
|                           static_cast<int>(out_lod_level[i + 1]));
 | |
|       auto out_grad_stride = framework::stride(out_grad_t.dims());
 | |
|       size_t offset = 0;
 | |
| 
 | |
|       for (size_t j = 0; j < n; ++j) {
 | |
|         auto x_grad_lod_level =
 | |
|             framework::ToAbsOffset(x_grads[j]->lod())[level_idx];
 | |
|         auto x_grad_stride = framework::stride(x_grads[j]->dims());
 | |
|         Tensor x_grad_t =
 | |
|             x_grads[j]->Slice(static_cast<int>(x_grad_lod_level[i]),
 | |
|                               static_cast<int>(x_grad_lod_level[i + 1]));
 | |
|         size_t axis_dim = x_grad_t.dims()[axis];
 | |
|         StridedMemcpy<T>(ctx.device_context(), out_grad_t.data<T>() + offset,
 | |
|                          out_grad_stride, out_grad_t.dims(), x_grad_stride,
 | |
|                          x_grad_t.data<T>());
 | |
|         offset += axis_dim * out_grad_stride[axis];
 | |
|       }
 | |
|     }
 | |
|   }
 | |
| };
 | |
| 
 | |
| }  // namespace operators
 | |
| }  // namespace paddle
 |