You can not select more than 25 topics
			Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
		
		
		
		
		
			
		
			
				
					
					
						
							70 lines
						
					
					
						
							2.4 KiB
						
					
					
				
			
		
		
	
	
							70 lines
						
					
					
						
							2.4 KiB
						
					
					
				| /* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserved.
 | |
| 
 | |
| Licensed under the Apache License, Version 2.0 (the "License");
 | |
| you may not use this file except in compliance with the License.
 | |
| You may obtain a copy of the License at
 | |
| 
 | |
|     http://www.apache.org/licenses/LICENSE-2.0
 | |
| 
 | |
| Unless required by applicable law or agreed to in writing, software
 | |
| distributed under the License is distributed on an "AS IS" BASIS,
 | |
| WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
 | |
| See the License for the specific language governing permissions and
 | |
| limitations under the License. */
 | |
| 
 | |
| #include "paddle/fluid/operators/sgd_op.h"
 | |
| 
 | |
| namespace paddle {
 | |
| namespace operators {
 | |
| 
 | |
| class SGDOp : public framework::OperatorWithKernel {
 | |
|  public:
 | |
|   using framework::OperatorWithKernel::OperatorWithKernel;
 | |
| 
 | |
|   void InferShape(framework::InferShapeContext* ctx) const override {
 | |
|     PADDLE_ENFORCE(ctx->HasInput("Param"),
 | |
|                    "Input(Param) of SGDOp should not be null.");
 | |
|     PADDLE_ENFORCE(ctx->HasInput("Grad"),
 | |
|                    "Input(Grad) of SGDOp should not be null.");
 | |
|     PADDLE_ENFORCE(ctx->HasInput("LearningRate"),
 | |
|                    "Input(LearningRate) of SGDOp should not be null.");
 | |
|     PADDLE_ENFORCE(ctx->HasOutput("ParamOut"),
 | |
|                    "Output(ParamOut) of SGDOp should not be null.");
 | |
| 
 | |
|     auto lr_dims = ctx->GetInputDim("LearningRate");
 | |
|     PADDLE_ENFORCE_EQ(framework::product(lr_dims), 1,
 | |
|                       "Learning rate should have 1 element");
 | |
|     auto param_dim = ctx->GetInputDim("Param");
 | |
|     // TODO(qijun): check dimensions of Param and Grad at complie
 | |
|     // and run time.
 | |
|     ctx->SetOutputDim("ParamOut", param_dim);
 | |
|   }
 | |
| };
 | |
| 
 | |
| class SGDOpMaker : public framework::OpProtoAndCheckerMaker {
 | |
|  public:
 | |
|   SGDOpMaker(OpProto* proto, OpAttrChecker* op_checker)
 | |
|       : OpProtoAndCheckerMaker(proto, op_checker) {
 | |
|     AddInput("Param", "(Tensor) Input parameter");
 | |
|     AddInput("LearningRate", "(Tensor) Learning rate of SGD");
 | |
|     AddInput("Grad", "(Tensor) Input gradient");
 | |
|     AddOutput("ParamOut", "(Tensor) Output parameter");
 | |
|     AddComment(R"DOC(
 | |
| 
 | |
| SGD operator
 | |
| 
 | |
| This operator implements one step of the stochastic gradient descent algorithm.
 | |
| 
 | |
| $$param\_out = param - learning\_rate * grad$$
 | |
| 
 | |
| )DOC");
 | |
|   }
 | |
| };
 | |
| 
 | |
| }  // namespace operators
 | |
| }  // namespace paddle
 | |
| 
 | |
| namespace ops = paddle::operators;
 | |
| REGISTER_OP_WITHOUT_GRADIENT(sgd, ops::SGDOp, ops::SGDOpMaker);
 | |
| REGISTER_OP_CPU_KERNEL(sgd, ops::SGDOpKernel<float>, ops::SGDOpKernel<double>);
 |