You can not select more than 25 topics
			Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
		
		
		
		
		
			
		
			
				
					
					
						
							97 lines
						
					
					
						
							3.6 KiB
						
					
					
				
			
		
		
	
	
							97 lines
						
					
					
						
							3.6 KiB
						
					
					
				| /* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserved.
 | |
| 
 | |
| Licensed under the Apache License, Version 2.0 (the "License");
 | |
| you may not use this file except in compliance with the License.
 | |
| You may obtain a copy of the License at
 | |
| 
 | |
|     http://www.apache.org/licenses/LICENSE-2.0
 | |
| 
 | |
| Unless required by applicable law or agreed to in writing, software
 | |
| distributed under the License is distributed on an "AS IS" BASIS,
 | |
| WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
 | |
| See the License for the specific language governing permissions and
 | |
| limitations under the License. */
 | |
| 
 | |
| #include "paddle/fluid/operators/softmax_op.h"
 | |
| 
 | |
| namespace paddle {
 | |
| namespace operators {
 | |
| 
 | |
| class SoftmaxOp : public framework::OperatorWithKernel {
 | |
|  public:
 | |
|   using framework::OperatorWithKernel::OperatorWithKernel;
 | |
| 
 | |
|   void InferShape(framework::InferShapeContext* ctx) const override {
 | |
|     PADDLE_ENFORCE(ctx->HasInput("X"),
 | |
|                    "Input(X) of SoftmaxOp should not be null.");
 | |
|     PADDLE_ENFORCE(ctx->HasOutput("Out"),
 | |
|                    "Output(Out) of SoftmaxOp should not be null.");
 | |
| 
 | |
|     auto x_dims = ctx->GetInputDim("X");
 | |
|     PADDLE_ENFORCE(x_dims.size() == 2UL,
 | |
|                    "The input of softmax op must be a matrix.");
 | |
|     ctx->SetOutputDim("Out", x_dims);
 | |
|     ctx->ShareLoD("X", /*->*/ "Out");
 | |
|   }
 | |
| };
 | |
| 
 | |
| class SoftmaxOpMaker : public framework::OpProtoAndCheckerMaker {
 | |
|  public:
 | |
|   SoftmaxOpMaker(OpProto* proto, OpAttrChecker* op_checker)
 | |
|       : OpProtoAndCheckerMaker(proto, op_checker) {
 | |
|     AddInput("X",
 | |
|              "The input tensor of softmax. "
 | |
|              "2-D with shape [batch_size, input_feature_dimensions].");
 | |
|     AddOutput("Out", "The normalized values with the same shape as X.");
 | |
|     AddComment(R"DOC(
 | |
| Softmax Operator.
 | |
| 
 | |
| The input of the softmax operator is a 2-D tensor with shape N x K (N is the
 | |
| batch_size, K is the dimension of input feature). The output tensor has the
 | |
| same shape as the input tensor.
 | |
| 
 | |
| For each row of the input tensor, the softmax operator squashes the
 | |
| K-dimensional vector of arbitrary real values to a K-dimensional vector of real
 | |
| values in the range [0, 1] that add up to 1.
 | |
| It computes the exponential of the given dimension and the sum of exponential
 | |
| values of all the other dimensions in the K-dimensional vector input.
 | |
| Then the ratio of the exponential of the given dimension and the sum of
 | |
| exponential values of all the other dimensions is the output of the softmax
 | |
| operator.
 | |
| 
 | |
| For each row $i$ and each column $j$ in Input(X), we have:
 | |
|     $$Out[i, j] = \frac{\exp(X[i, j])}{\sum_j(exp(X[i, j])}$$
 | |
| 
 | |
| )DOC");
 | |
|   }
 | |
| };
 | |
| 
 | |
| class SoftmaxOpGrad : public framework::OperatorWithKernel {
 | |
|  public:
 | |
|   using framework::OperatorWithKernel::OperatorWithKernel;
 | |
| 
 | |
|   void InferShape(framework::InferShapeContext* ctx) const override {
 | |
|     PADDLE_ENFORCE(ctx->HasInput("Out"), "Input(Out) should be not null.");
 | |
|     PADDLE_ENFORCE(ctx->HasInput(framework::GradVarName("Out")),
 | |
|                    "Input(Out@GRAD) should be not null.");
 | |
|     PADDLE_ENFORCE_EQ(ctx->GetInputDim("Out"),
 | |
|                       ctx->GetInputDim(framework::GradVarName("Out")),
 | |
|                       "Input(Out) and its gradients should have a same shape.");
 | |
| 
 | |
|     ctx->SetOutputDim(framework::GradVarName("X"), ctx->GetInputDim("X"));
 | |
|   }
 | |
| };
 | |
| 
 | |
| }  // namespace operators
 | |
| }  // namespace paddle
 | |
| 
 | |
| namespace ops = paddle::operators;
 | |
| 
 | |
| REGISTER_OP(softmax, ops::SoftmaxOp, ops::SoftmaxOpMaker, softmax_grad,
 | |
|             ops::SoftmaxOpGrad);
 | |
| REGISTER_OP_CPU_KERNEL(
 | |
|     softmax, ops::SoftmaxKernel<paddle::platform::CPUDeviceContext, float>);
 | |
| REGISTER_OP_CPU_KERNEL(
 | |
|     softmax_grad,
 | |
|     ops::SoftmaxGradKernel<paddle::platform::CPUDeviceContext, float>);
 |