You can not select more than 25 topics
			Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
		
		
		
		
		
			
		
			
				
					
					
						
							205 lines
						
					
					
						
							8.1 KiB
						
					
					
				
			
		
		
	
	
							205 lines
						
					
					
						
							8.1 KiB
						
					
					
				| /* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserved.
 | |
| 
 | |
| Licensed under the Apache License, Version 2.0 (the "License");
 | |
| you may not use this file except in compliance with the License.
 | |
| You may obtain a copy of the License at
 | |
| 
 | |
|     http://www.apache.org/licenses/LICENSE-2.0
 | |
| 
 | |
| Unless required by applicable law or agreed to in writing, software
 | |
| distributed under the License is distributed on an "AS IS" BASIS,
 | |
| WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
 | |
| See the License for the specific language governing permissions and
 | |
| limitations under the License. */
 | |
| 
 | |
| #include "paddle/fluid/operators/softmax_with_cross_entropy_op.h"
 | |
| 
 | |
| namespace paddle {
 | |
| namespace operators {
 | |
| 
 | |
| class SoftmaxWithCrossEntropyOpMaker
 | |
|     : public framework::OpProtoAndCheckerMaker {
 | |
|  public:
 | |
|   SoftmaxWithCrossEntropyOpMaker(OpProto* proto, OpAttrChecker* op_checker)
 | |
|       : OpProtoAndCheckerMaker(proto, op_checker) {
 | |
|     AddInput("Logits",
 | |
|              "(Tensor, default: Tensor<float>), The unscaled log probabilities "
 | |
|              "which is a 2-D tensor with shape [N x K]. N is the batch_size, "
 | |
|              "and K is the class number.");
 | |
|     AddInput("Label",
 | |
|              "(Tensor) The ground truth which is a 2-D tensor. If soft_label "
 | |
|              "is set to false, Label is a Tensor<int64> with shape [N x 1]. If "
 | |
|              "soft_label is set to true, Label is a Tensor<float/double> with "
 | |
|              "shape [N x K].");
 | |
|     AddOutput(
 | |
|         "Softmax",
 | |
|         "(Tensor, default: Tensor<float>), A 2-D tensor with shape [N x K]. "
 | |
|         "The outputs value of softmax activation by given the input batch, "
 | |
|         "which will be used in backward calculation.")
 | |
|         .AsIntermediate();
 | |
|     AddOutput("Loss",
 | |
|               "(Tensor, default: Tensor<float>), A 2-D tensor. The cross "
 | |
|               "entropy loss with shape [N x 1].");
 | |
|     AddAttr<bool>(
 | |
|         "soft_label",
 | |
|         "(bool, default: false), A flag to indicate whether to interpretate "
 | |
|         "the given labels as soft labels.")
 | |
|         .SetDefault(false);
 | |
|     AddComment(R"DOC(
 | |
| Softmax With Cross Entropy Operator.
 | |
| 
 | |
| Cross entropy loss with softmax is used as the output layer extensively. This
 | |
| operator computes the softmax normalized values for each row of the input
 | |
| tensor, after which cross-entropy loss is computed. This provides a more
 | |
| numerically stable gradient.
 | |
| 
 | |
| Because this operator performs a softmax on logits internally, it expects
 | |
| unscaled logits. This operator should not be used with the output of
 | |
| softmax operator since that would produce incorrect results.
 | |
| 
 | |
| When the attribute soft_label is set false, this operators expects mutually
 | |
| exclusive hard labels, each sample in a batch is in exactly one class with a
 | |
| probability of 1.0. Each sample in the batch will have a single label.
 | |
| 
 | |
| The equation is as follows:
 | |
| 
 | |
| 1) Hard label (one-hot label, so every sample has exactly one class)
 | |
| 
 | |
| $$Loss_j =  -\text{Logit}_{Label_j} +
 | |
| \log\left(\sum_{i=0}^{K}\exp(\text{Logit}_i)\right),
 | |
| j = 1,..., K$$
 | |
| 
 | |
| 2) Soft label (each sample can have a distribution over all classes)
 | |
| 
 | |
| $$Loss_j =  -\sum_{i=0}^{K}\text{Label}_i \left(\text{Logit}_i -
 | |
| \log\left(\sum_{i=0}^{K}\exp(\text{Logit}_i)\right)\right),
 | |
| j = 1,...,K$$
 | |
| 
 | |
| )DOC");
 | |
|   }
 | |
| };
 | |
| 
 | |
| class SoftmaxWithCrossEntropyOp : public framework::OperatorWithKernel {
 | |
|  public:
 | |
|   using framework::OperatorWithKernel::OperatorWithKernel;
 | |
| 
 | |
|   void InferShape(framework::InferShapeContext* ctx) const override {
 | |
|     PADDLE_ENFORCE(ctx->HasInput("Logits"),
 | |
|                    "Input(Logits) should be not null.");
 | |
|     PADDLE_ENFORCE(ctx->HasInput("Label"), "Input(Label) should be not null.");
 | |
| 
 | |
|     PADDLE_ENFORCE(ctx->HasOutput("Softmax"),
 | |
|                    "Output(Softmax) should be not null.");
 | |
|     PADDLE_ENFORCE(ctx->HasOutput("Loss"), "Output(Loss) should be not null.");
 | |
| 
 | |
|     auto logits_dims = ctx->GetInputDim("Logits");
 | |
|     auto labels_dims = ctx->GetInputDim("Label");
 | |
|     PADDLE_ENFORCE_EQ(
 | |
|         logits_dims.size(), 2UL,
 | |
|         "The input of softmax_with_cross_entropy should be a 2-D tensor.");
 | |
|     PADDLE_ENFORCE_EQ(labels_dims.size(), 2UL,
 | |
|                       "The labels should be a 2-D tensor.");
 | |
| 
 | |
|     if (ctx->Attrs().Get<bool>("soft_label")) {
 | |
|       PADDLE_ENFORCE_EQ(logits_dims[1], labels_dims[1],
 | |
|                         "If Attr(soft_label) == true, the 2nd dimension of "
 | |
|                         "Input(X) and Input(Label) should be equal.");
 | |
|     } else {
 | |
|       PADDLE_ENFORCE_EQ(labels_dims[1], 1UL,
 | |
|                         "If Attr(soft_label) == false, the 2nd dimension of "
 | |
|                         "Input(Label) should be 1.");
 | |
|     }
 | |
| 
 | |
|     ctx->SetOutputDim("Softmax", logits_dims);
 | |
|     ctx->SetOutputDim("Loss", {logits_dims[0], 1});
 | |
| 
 | |
|     ctx->ShareLoD("Logits", /*->*/ "Softmax");
 | |
|     ctx->ShareLoD("Logits", /*->*/ "Loss");
 | |
|   }
 | |
| 
 | |
|  protected:
 | |
|   framework::OpKernelType GetExpectedKernelType(
 | |
|       const framework::ExecutionContext& ctx) const override {
 | |
|     return framework::OpKernelType(
 | |
|         framework::ToDataType(ctx.Input<Tensor>("Logits")->type()),
 | |
|         ctx.device_context());
 | |
|   }
 | |
| };
 | |
| 
 | |
| class SoftmaxWithCrossEntropyOpGrad : public framework::OperatorWithKernel {
 | |
|  public:
 | |
|   using framework::OperatorWithKernel::OperatorWithKernel;
 | |
| 
 | |
|   void InferShape(framework::InferShapeContext* ctx) const override {
 | |
|     PADDLE_ENFORCE(ctx->HasInput(framework::GradVarName("Loss")),
 | |
|                    "Input(Loss@Grad) should not be null.");
 | |
|     PADDLE_ENFORCE(ctx->HasInput("Softmax"),
 | |
|                    "Input(Softmax) should be not null.");
 | |
|     PADDLE_ENFORCE(ctx->HasInput("Label"), "Input(Label) should be not null.");
 | |
|     PADDLE_ENFORCE(ctx->HasOutput(framework::GradVarName("Logits")),
 | |
|                    "Output(Logits@Grad) should be not null.");
 | |
| 
 | |
|     auto softmax_dims = ctx->GetInputDim("Softmax");
 | |
|     auto labels_dims = ctx->GetInputDim("Label");
 | |
|     PADDLE_ENFORCE_EQ(labels_dims.size(), 2UL,
 | |
|                       "The labels should be a 2-D tensor.");
 | |
| 
 | |
|     if (ctx->Attrs().Get<bool>("soft_label")) {
 | |
|       PADDLE_ENFORCE_EQ(softmax_dims[1], labels_dims[1],
 | |
|                         "When Attr(soft_label) == true, the 2nd dimension of "
 | |
|                         "Input(X) and Input(Label) should be equal.");
 | |
|     } else {
 | |
|       PADDLE_ENFORCE_EQ(labels_dims[1], 1UL,
 | |
|                         "When Attr(soft_label) == false, the 2nd dimension of "
 | |
|                         "Input(Label) should be 1.");
 | |
|     }
 | |
| 
 | |
|     ctx->SetOutputDim(framework::GradVarName("Logits"),
 | |
|                       ctx->GetInputDim("Softmax"));
 | |
|   }
 | |
| 
 | |
|  protected:
 | |
|   framework::OpKernelType GetExpectedKernelType(
 | |
|       const framework::ExecutionContext& ctx) const override {
 | |
|     return framework::OpKernelType(
 | |
|         framework::ToDataType(
 | |
|             ctx.Input<Tensor>(framework::GradVarName("Loss"))->type()),
 | |
|         ctx.device_context());
 | |
|   }
 | |
| };
 | |
| 
 | |
| class SoftmaxGradMaker : public framework::SingleGradOpDescMaker {
 | |
|  public:
 | |
|   using framework::SingleGradOpDescMaker::SingleGradOpDescMaker;
 | |
| 
 | |
|  protected:
 | |
|   std::unique_ptr<framework::OpDesc> Apply() const override {
 | |
|     auto* grad_op = new framework::OpDesc();
 | |
|     grad_op->SetType("softmax_with_cross_entropy_grad");
 | |
|     grad_op->SetInput("Label", Input("Label"));
 | |
|     grad_op->SetInput("Softmax", Output("Softmax"));
 | |
|     grad_op->SetInput("Loss", Output("Loss"));
 | |
|     grad_op->SetInput(framework::GradVarName("Softmax"), OutputGrad("Softmax"));
 | |
|     grad_op->SetInput(framework::GradVarName("Loss"), OutputGrad("Loss"));
 | |
|     grad_op->SetOutput(framework::GradVarName("Logits"), InputGrad("Logits"));
 | |
|     grad_op->SetAttrMap(Attrs());
 | |
|     return std::unique_ptr<framework::OpDesc>(grad_op);
 | |
|   }
 | |
| };
 | |
| 
 | |
| }  // namespace operators
 | |
| }  // namespace paddle
 | |
| 
 | |
| namespace ops = paddle::operators;
 | |
| 
 | |
| REGISTER_OPERATOR(softmax_with_cross_entropy, ops::SoftmaxWithCrossEntropyOp,
 | |
|                   ops::SoftmaxWithCrossEntropyOpMaker, ops::SoftmaxGradMaker);
 | |
| REGISTER_OPERATOR(softmax_with_cross_entropy_grad,
 | |
|                   ops::SoftmaxWithCrossEntropyOpGrad);
 | |
| REGISTER_OP_CPU_KERNEL(softmax_with_cross_entropy,
 | |
|                        ops::SoftmaxWithCrossEntropyKernel<float>,
 | |
|                        ops::SoftmaxWithCrossEntropyKernel<double>);
 | |
| REGISTER_OP_CPU_KERNEL(softmax_with_cross_entropy_grad,
 | |
|                        ops::SoftmaxWithCrossEntropyGradKernel<float>,
 | |
|                        ops::SoftmaxWithCrossEntropyGradKernel<double>);
 |