You can not select more than 25 topics
			Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
		
		
		
		
		
			
		
			
				
					
					
						
							91 lines
						
					
					
						
							3.5 KiB
						
					
					
				
			
		
		
	
	
							91 lines
						
					
					
						
							3.5 KiB
						
					
					
				| /* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserved.
 | |
| 
 | |
| Licensed under the Apache License, Version 2.0 (the "License");
 | |
| you may not use this file except in compliance with the License.
 | |
| You may obtain a copy of the License at
 | |
| 
 | |
|     http://www.apache.org/licenses/LICENSE-2.0
 | |
| 
 | |
| Unless required by applicable law or agreed to in writing, software
 | |
| distributed under the License is distributed on an "AS IS" BASIS,
 | |
| WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
 | |
| See the License for the specific language governing permissions and
 | |
| limitations under the License. */
 | |
| 
 | |
| #pragma once
 | |
| #include "paddle/fluid/framework/eigen.h"
 | |
| #include "paddle/fluid/framework/op_registry.h"
 | |
| #include "paddle/fluid/operators/math/cross_entropy.h"
 | |
| #include "paddle/fluid/operators/math/softmax.h"
 | |
| 
 | |
| namespace paddle {
 | |
| namespace operators {
 | |
| 
 | |
| using Tensor = framework::Tensor;
 | |
| template <typename T, int MajorType = Eigen::RowMajor,
 | |
|           typename IndexType = Eigen::DenseIndex>
 | |
| using EigenMatrix = framework::EigenMatrix<T, MajorType, IndexType>;
 | |
| 
 | |
| template <typename T>
 | |
| class SoftmaxWithCrossEntropyKernel : public framework::OpKernel<T> {
 | |
|  public:
 | |
|   void Compute(const framework::ExecutionContext& context) const override {
 | |
|     PADDLE_ENFORCE(platform::is_cpu_place(context.GetPlace()),
 | |
|                    "This kernel only runs on CPU.");
 | |
|     const Tensor* logits = context.Input<Tensor>("Logits");
 | |
|     const Tensor* labels = context.Input<Tensor>("Label");
 | |
|     Tensor* softmax = context.Output<Tensor>("Softmax");
 | |
|     Tensor* loss = context.Output<Tensor>("Loss");
 | |
| 
 | |
|     softmax->mutable_data<T>(context.GetPlace());
 | |
|     loss->mutable_data<T>(context.GetPlace());
 | |
| 
 | |
|     auto& dev_ctx =
 | |
|         context.template device_context<platform::CPUDeviceContext>();
 | |
|     math::SoftmaxFunctor<platform::CPUDeviceContext, T>()(dev_ctx, logits,
 | |
|                                                           softmax);
 | |
|     math::CrossEntropyFunctor<platform::CPUDeviceContext, T>()(
 | |
|         dev_ctx, loss, softmax, labels, context.Attr<bool>("soft_label"));
 | |
|   }
 | |
| };
 | |
| 
 | |
| template <typename T>
 | |
| class SoftmaxWithCrossEntropyGradKernel : public framework::OpKernel<T> {
 | |
|  public:
 | |
|   void Compute(const framework::ExecutionContext& context) const override {
 | |
|     const Tensor* out_grad =
 | |
|         context.Input<Tensor>(framework::GradVarName("Loss"));
 | |
|     const Tensor* labels = context.Input<Tensor>("Label");
 | |
|     Tensor* logit_grad =
 | |
|         context.Output<Tensor>(framework::GradVarName("Logits"));
 | |
|     logit_grad->ShareDataWith(*context.Input<Tensor>("Softmax"));
 | |
| 
 | |
|     const int class_num = logit_grad->dims()[1];
 | |
|     auto out_grad_mat = EigenMatrix<T>::From(*out_grad);
 | |
|     auto logit_grad_mat = EigenMatrix<T>::From(*logit_grad);
 | |
|     auto& place = *context.template device_context<platform::CPUDeviceContext>()
 | |
|                        .eigen_device();
 | |
|     if (context.Attr<bool>("soft_label")) {
 | |
|       auto lbl_mat = EigenMatrix<T>::From(*labels);
 | |
|       logit_grad_mat.device(place) =
 | |
|           out_grad_mat.broadcast(Eigen::DSizes<int, 2>(1, class_num)) *
 | |
|           (logit_grad_mat - lbl_mat);
 | |
|     } else {
 | |
|       logit_grad_mat.device(place) =
 | |
|           logit_grad_mat *
 | |
|           out_grad_mat.broadcast(Eigen::DSizes<int, 2>(1, class_num));
 | |
| 
 | |
|       const int batch_size = logit_grad->dims()[0];
 | |
|       const int64_t* label_data = labels->data<int64_t>();
 | |
|       T* logit_grad_data = logit_grad->data<T>();
 | |
|       const T* out_grad_data = out_grad->data<T>();
 | |
|       for (int i = 0; i < batch_size; ++i) {
 | |
|         logit_grad_data[i * class_num + label_data[i]] -= out_grad_data[i];
 | |
|       }
 | |
|     }
 | |
|   }
 | |
| };
 | |
| 
 | |
| }  // namespace operators
 | |
| }  // namespace paddle
 |