You can not select more than 25 topics
			Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
		
		
		
		
		
			
		
			
				
					
					
						
							134 lines
						
					
					
						
							4.3 KiB
						
					
					
				
			
		
		
	
	
							134 lines
						
					
					
						
							4.3 KiB
						
					
					
				| /* Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
 | |
| 
 | |
| Licensed under the Apache License, Version 2.0 (the "License");
 | |
| you may not use this file except in compliance with the License.
 | |
| You may obtain a copy of the License at
 | |
| 
 | |
|     http://www.apache.org/licenses/LICENSE-2.0
 | |
| 
 | |
| Unless required by applicable law or agreed to in writing, software
 | |
| distributed under the License is distributed on an "AS IS" BASIS,
 | |
| WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
 | |
| See the License for the specific language governing permissions and
 | |
| limitations under the License. */
 | |
| 
 | |
| #pragma once
 | |
| #include "paddle/fluid/framework/op_registry.h"
 | |
| #include "paddle/fluid/platform/assert.h"
 | |
| #include "paddle/fluid/platform/for_range.h"
 | |
| 
 | |
| namespace paddle {
 | |
| namespace operators {
 | |
| template <typename T, typename WT>
 | |
| struct TargetAssignFunctor {
 | |
|   const T* in_;
 | |
|   const int* match_indices_;
 | |
|   const size_t* lod_;
 | |
|   const int mismatch_value_;
 | |
|   const int64_t N_;
 | |
|   const int64_t M_;
 | |
|   const int64_t P_;
 | |
|   const int64_t K_;
 | |
| 
 | |
|   T* out_;
 | |
|   WT* out_wt_;
 | |
| 
 | |
|   TargetAssignFunctor(const T* input, const int* match_indices,
 | |
|                       const size_t* lod, const int mismatch_value,
 | |
|                       const int64_t N, const int64_t M, const int64_t P,
 | |
|                       const int64_t K, T* out, WT* out_wt)
 | |
|       : in_(input),
 | |
|         match_indices_(match_indices),
 | |
|         lod_(lod),
 | |
|         mismatch_value_(mismatch_value),
 | |
|         N_(N),
 | |
|         M_(M),
 | |
|         P_(P),
 | |
|         K_(K),
 | |
|         out_(out),
 | |
|         out_wt_(out_wt) {}
 | |
| 
 | |
|   HOSTDEVICE void operator()(size_t i) const {
 | |
|     int h = i / M_;
 | |
|     int w = i - h * M_;
 | |
| 
 | |
|     size_t off = lod_[h];
 | |
|     int id = match_indices_[i];
 | |
| 
 | |
|     T* out = out_ + i * K_;
 | |
|     WT* out_wt = out_wt_ + i;
 | |
| 
 | |
|     if (id > -1) {
 | |
|       int w_off = w % P_;
 | |
|       const T* in = in_ + ((off + id) * P_ + w_off) * K_;
 | |
|       for (int64_t k = 0; k < K_; ++k) {
 | |
|         out[k] = in[k];
 | |
|       }
 | |
|       out_wt[0] = static_cast<WT>(1.);
 | |
|     } else {
 | |
|       for (int64_t k = 0; k < K_; ++k) {
 | |
|         out[k] = static_cast<T>(mismatch_value_);
 | |
|       }
 | |
|       out_wt[0] = static_cast<WT>(0.);
 | |
|     }
 | |
|   }
 | |
| };
 | |
| 
 | |
| template <typename DeviceContext, typename T, typename WT>
 | |
| struct NegTargetAssignFunctor {
 | |
|   void operator()(const platform::DeviceContext& ctx, const int* neg_indices,
 | |
|                   const size_t* lod, const int N, const int M, const int K,
 | |
|                   const int mismatch_value, T* out, WT* out_wt) const;
 | |
| };
 | |
| 
 | |
| template <typename DeviceContext, typename T, typename WT>
 | |
| class TargetAssignKernel : public framework::OpKernel<T> {
 | |
|  public:
 | |
|   void Compute(const framework::ExecutionContext& ctx) const override {
 | |
|     auto* x = ctx.Input<framework::LoDTensor>("X");
 | |
|     auto* match_indices = ctx.Input<framework::Tensor>("MatchIndices");
 | |
| 
 | |
|     auto* out = ctx.Output<framework::Tensor>("Out");
 | |
|     auto* out_wt = ctx.Output<framework::Tensor>("OutWeight");
 | |
| 
 | |
|     PADDLE_ENFORCE_EQ(x->lod().size(), 1UL);
 | |
|     int mismatch_value = ctx.Attr<int>("mismatch_value");
 | |
| 
 | |
|     const T* x_data = x->data<T>();
 | |
|     const int* match_idx_data = match_indices->data<int>();
 | |
| 
 | |
|     T* out_data = out->mutable_data<T>(ctx.GetPlace());
 | |
|     WT* out_wt_data = out_wt->mutable_data<WT>(ctx.GetPlace());
 | |
| 
 | |
|     int64_t n = match_indices->dims()[0];
 | |
|     int64_t m = match_indices->dims()[1];
 | |
|     int64_t p = x->dims()[1];
 | |
|     int64_t k = x->dims()[2];
 | |
| 
 | |
|     auto x_lod = x->lod().back();
 | |
|     size_t* x_lod_data = x_lod.MutableData(ctx.GetPlace());
 | |
| 
 | |
|     TargetAssignFunctor<T, WT> functor(x_data, match_idx_data, x_lod_data,
 | |
|                                        mismatch_value, n, m, p, k, out_data,
 | |
|                                        out_wt_data);
 | |
| 
 | |
|     auto& device_ctx = ctx.template device_context<DeviceContext>();
 | |
|     platform::ForRange<DeviceContext> for_range(device_ctx, n * m);
 | |
|     for_range(functor);
 | |
| 
 | |
|     auto* neg_indices = ctx.Input<framework::LoDTensor>("NegIndices");
 | |
|     if (neg_indices) {
 | |
|       PADDLE_ENFORCE_EQ(neg_indices->lod().size(), 1UL);
 | |
|       const int* neg_idx_data = neg_indices->data<int>();
 | |
|       auto neg_lod = neg_indices->lod().back();
 | |
|       size_t* neg_lod_data = neg_lod.MutableData(ctx.GetPlace());
 | |
|       NegTargetAssignFunctor<DeviceContext, T, WT> neg_trg_functor;
 | |
|       neg_trg_functor(device_ctx, neg_idx_data, neg_lod_data, n, m, k,
 | |
|                       mismatch_value, out_data, out_wt_data);
 | |
|     }
 | |
|   }
 | |
| };
 | |
| 
 | |
| }  // namespace operators
 | |
| }  // namespace paddle
 |