You can not select more than 25 topics
			Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
		
		
		
		
		
			
		
			
				
					
					
						
							79 lines
						
					
					
						
							2.9 KiB
						
					
					
				
			
		
		
	
	
							79 lines
						
					
					
						
							2.9 KiB
						
					
					
				| /* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserved.
 | |
| 
 | |
| Licensed under the Apache License, Version 2.0 (the "License");
 | |
| you may not use this file except in compliance with the License.
 | |
| You may obtain a copy of the License at
 | |
| 
 | |
|     http://www.apache.org/licenses/LICENSE-2.0
 | |
| 
 | |
| Unless required by applicable law or agreed to in writing, software
 | |
| distributed under the License is distributed on an "AS IS" BASIS,
 | |
| WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
 | |
| See the License for the specific language governing permissions and
 | |
| limitations under the License. */
 | |
| 
 | |
| #include "paddle/fluid/operators/top_k_op.h"
 | |
| 
 | |
| namespace paddle {
 | |
| namespace operators {
 | |
| 
 | |
| class TopkOp : public framework::OperatorWithKernel {
 | |
|  public:
 | |
|   using framework::OperatorWithKernel::OperatorWithKernel;
 | |
| 
 | |
|   void InferShape(framework::InferShapeContext *ctx) const override {
 | |
|     PADDLE_ENFORCE(ctx->HasInput("X"),
 | |
|                    "Input(X) of TopkOp should not be null.");
 | |
|     PADDLE_ENFORCE(ctx->HasOutput("Out"),
 | |
|                    "Output(Out) of TopkOp should not be null.");
 | |
|     PADDLE_ENFORCE(ctx->HasOutput("Indices"),
 | |
|                    "Output(Indices) of TopkOp should not be null.");
 | |
| 
 | |
|     auto input_dims = ctx->GetInputDim("X");
 | |
|     const int k = static_cast<int>(ctx->Attrs().Get<int>("k"));
 | |
| 
 | |
|     PADDLE_ENFORCE_GE(k, 1, "k must >= 1");
 | |
|     PADDLE_ENFORCE_GE(input_dims.size(), 1, "input must have >= 1d shape");
 | |
|     PADDLE_ENFORCE_GE(input_dims[input_dims.size() - 1], k,
 | |
|                       "input must have >= k columns");
 | |
| 
 | |
|     framework::DDim dims = input_dims;
 | |
|     dims[dims.size() - 1] = k;
 | |
|     ctx->SetOutputDim("Out", dims);
 | |
|     ctx->SetOutputDim("Indices", dims);
 | |
|     ctx->ShareLoD("X", "Out");
 | |
|     ctx->ShareLoD("X", "Indices");
 | |
|   }
 | |
| };
 | |
| 
 | |
| class TopkOpMaker : public framework::OpProtoAndCheckerMaker {
 | |
|  public:
 | |
|   TopkOpMaker(OpProto *proto, OpAttrChecker *op_checker)
 | |
|       : OpProtoAndCheckerMaker(proto, op_checker) {
 | |
|     AddInput("X", "(Tensor) The input of Topk op");
 | |
|     AddOutput("Out", "(Tensor) The output tensor of Topk op");
 | |
|     AddOutput("Indices", "(Tensor) The indices of Topk elements of input");
 | |
|     AddComment(R"DOC(
 | |
| Top K operator
 | |
| 
 | |
| If the input is a vector (1d tensor), this operator finds the k largest 
 | |
| entries in the vector and outputs their values and indices as vectors. 
 | |
| Thus values[j] is the j-th largest entry in input, and its index is indices[j].
 | |
| 
 | |
| For matrices, this operator computes the top k entries in each row. )DOC");
 | |
|     AddAttr<int>("k",
 | |
|                  "(int, default 1) Number of top elements to look for along "
 | |
|                  "the last dimension (along each row for matrices).")
 | |
|         .SetDefault(1);
 | |
|   }
 | |
| };
 | |
| 
 | |
| }  // namespace operators
 | |
| }  // namespace paddle
 | |
| 
 | |
| namespace ops = paddle::operators;
 | |
| REGISTER_OPERATOR(top_k, ops::TopkOp, ops::TopkOpMaker,
 | |
|                   paddle::framework::EmptyGradOpMaker);
 | |
| REGISTER_OP_CPU_KERNEL(top_k,
 | |
|                        ops::TopkKernel<paddle::platform::CPUPlace, float>);
 |