You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
Paddle/python/paddle/fluid/tests/unittests/auto_checkpoint_utils.py

130 lines
4.2 KiB

# Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import unittest
import paddle
import paddle.fluid as fluid
import paddle.fluid.incubate.fleet.base.role_maker as role_maker
from paddle.fluid.incubate.fleet.collective import CollectiveOptimizer, fleet
import os
import sys
from paddle.distributed.fleet.utils.fs import LocalFS, HDFSClient
import paddle.fluid.incubate.checkpoint.auto_checkpoint as acp
from paddle.fluid.incubate.checkpoint.checkpoint_saver import PaddleModel
from paddle.fluid.framework import program_guard
from paddle.fluid import unique_name
import numpy as np
from paddle.io import Dataset, BatchSampler, DataLoader
BATCH_NUM = 4
BATCH_SIZE = 1
#IMAGE_SIZE = 128
CLASS_NUM = 2
USE_GPU = False # whether use GPU to run model
places = fluid.cuda_places() if USE_GPU else fluid.cpu_places()
logger = None
def get_logger():
global logger
logger = acp._get_logger(20)
return logger
def get_random_images_and_labels(image_shape, label_shape):
image = np.random.random(size=image_shape).astype('float32')
label = np.random.random(size=label_shape).astype('int64')
return image, label
def sample_list_generator_creator():
def __reader__():
for _ in range(BATCH_NUM):
sample_list = []
for _ in range(BATCH_SIZE):
image, label = get_random_images_and_labels([4, 4], [1])
sample_list.append([image, label])
yield sample_list
return __reader__
class AutoCheckpointBase(unittest.TestCase):
def _init_env(self,
exe,
main_prog,
startup_prog,
minimize=True,
iterable=True):
def simple_net():
image = fluid.data(name='image', shape=[-1, 4, 4], dtype='float32')
label = fluid.data(name='label', shape=[-1, 1], dtype='int64')
fc_tmp = fluid.layers.fc(image, size=CLASS_NUM)
cross_entropy = fluid.layers.softmax_with_cross_entropy(fc_tmp,
label)
loss = fluid.layers.reduce_mean(cross_entropy)
sgd = fluid.optimizer.SGD(learning_rate=1e-3)
if minimize:
sgd.minimize(loss)
return sgd, loss, image, label
with program_guard(main_prog, startup_prog):
sgd, loss, image, label = simple_net()
if minimize:
compiled = fluid.CompiledProgram(main_prog).with_data_parallel(
loss_name=loss.name)
else:
compiled = None
loader = fluid.io.DataLoader.from_generator(
feed_list=[image, label],
capacity=64,
use_double_buffer=True,
iterable=iterable)
loader.set_sample_list_generator(sample_list_generator_creator(),
places[0])
if minimize:
exe.run(startup_prog)
return compiled, loader, sgd, loss, image, label
def _generate(self):
main_prog = fluid.Program()
startup_prog = fluid.Program()
exe = fluid.Executor(places[0])
return exe, main_prog, startup_prog
def _reset_generator(self):
unique_name.generator = fluid.unique_name.UniqueNameGenerator()
acp.generator = fluid.unique_name.UniqueNameGenerator()
acp.g_acp_type = None
acp.g_checker = acp.AutoCheckpointChecker()
acp.g_program_attr = {}
def _clear_envs(self):
os.environ.pop("PADDLE_RUNNING_ENV", None)
def _readd_envs(self):
os.environ["PADDLE_RUNNING_ENV"] = "PADDLE_EDL_AUTO_CHECKPOINT"