You can not select more than 25 topics
Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
159 lines
6.1 KiB
159 lines
6.1 KiB
# Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved.
|
|
#
|
|
# Licensed under the Apache License, Version 2.0 (the "License");
|
|
# you may not use this file except in compliance with the License.
|
|
# You may obtain a copy of the License at
|
|
#
|
|
# http://www.apache.org/licenses/LICENSE-2.0
|
|
#
|
|
# Unless required by applicable law or agreed to in writing, software
|
|
# distributed under the License is distributed on an "AS IS" BASIS,
|
|
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
# See the License for the specific language governing permissions and
|
|
# limitations under the License.
|
|
|
|
import unittest
|
|
import paddle
|
|
from paddle import fluid
|
|
import os
|
|
import paddle.distributed.fleet as fleet
|
|
import paddle.distributed.fleet.base.role_maker as role_maker
|
|
|
|
|
|
class TestFleetMetaOptimizer(unittest.TestCase):
|
|
def setUp(self):
|
|
os.environ["PADDLE_TRAINER_ID"] = "1"
|
|
os.environ[
|
|
"PADDLE_TRAINER_ENDPOINTS"] = "127.0.0.1:36001,127.0.0.1:36002"
|
|
|
|
def net(self, main_prog, startup_prog):
|
|
with fluid.program_guard(main_prog, startup_prog):
|
|
with fluid.unique_name.guard():
|
|
role = role_maker.PaddleCloudRoleMaker(is_collective=True)
|
|
fleet.init(role)
|
|
input_x = paddle.fluid.layers.data(
|
|
name="x", shape=[32], dtype='float32')
|
|
input_y = paddle.fluid.layers.data(
|
|
name="y", shape=[1], dtype='int64')
|
|
|
|
fc_1 = paddle.fluid.layers.fc(input=input_x,
|
|
size=64,
|
|
act='tanh')
|
|
fc_2 = paddle.fluid.layers.fc(input=fc_1, size=256, act='tanh')
|
|
prediction = paddle.fluid.layers.fc(input=[fc_2],
|
|
size=2,
|
|
act='softmax')
|
|
cost = paddle.fluid.layers.cross_entropy(
|
|
input=prediction, label=input_y)
|
|
avg_cost = paddle.fluid.layers.mean(x=cost)
|
|
|
|
strategy = paddle.distributed.fleet.DistributedStrategy()
|
|
return avg_cost, strategy
|
|
|
|
def optimizer(self,
|
|
loss,
|
|
strategy,
|
|
train_prog,
|
|
startup_prog,
|
|
name='momentum',
|
|
regularization=None,
|
|
grad_clip=None):
|
|
with fluid.program_guard(train_prog, startup_prog):
|
|
with fluid.unique_name.guard():
|
|
if name == 'momentum':
|
|
optimizer = paddle.fluid.optimizer.Momentum(
|
|
learning_rate=0.01,
|
|
momentum=0.9,
|
|
regularization=regularization,
|
|
grad_clip=grad_clip)
|
|
elif name == 'adam':
|
|
optimizer = paddle.fluid.optimizer.Adam(
|
|
learning_rate=0.01,
|
|
regularization=regularization,
|
|
grad_clip=grad_clip)
|
|
optimizer = fleet.distributed_optimizer(
|
|
optimizer, strategy=strategy)
|
|
optimizer.minimize(loss)
|
|
|
|
def set_strategy(self, strategy, name):
|
|
if name == 'amp':
|
|
strategy.amp = True
|
|
strategy.amp_configs = {
|
|
"init_loss_scaling": 32768,
|
|
"decr_every_n_nan_or_inf": 2,
|
|
"incr_every_n_steps": 1000,
|
|
"incr_ratio": 2.0,
|
|
"use_dynamic_loss_scaling": True,
|
|
"decr_ratio": 0.5,
|
|
"custom_white_list": ['softmax'],
|
|
"custom_black_list": ['tanh'],
|
|
}
|
|
elif name == 'pure_fp16':
|
|
strategy.amp = True
|
|
strategy.amp_configs = {
|
|
"init_loss_scaling": 32768,
|
|
"decr_every_n_nan_or_inf": 2,
|
|
"incr_every_n_steps": 1000,
|
|
"incr_ratio": 2.0,
|
|
"use_dynamic_loss_scaling": True,
|
|
"decr_ratio": 0.5,
|
|
"custom_white_list": ['softmax'],
|
|
"custom_black_list": ['tanh'],
|
|
"use_pure_fp16": True,
|
|
"use_fp16_guard": False,
|
|
}
|
|
|
|
elif name == 'dgc':
|
|
strategy.dgc = True
|
|
strategy.dgc_configs = {
|
|
"rampup_begin_step": 128,
|
|
"rampup_step": 100,
|
|
"sparsity": [0.996, 0.999]
|
|
}
|
|
elif name == 'recompute':
|
|
strategy.recompute = True
|
|
strategy.recompute_configs = {
|
|
"checkpoints": ["fc_0.tmp_2", "fc_1.tmp_2"]
|
|
}
|
|
elif name == 'lars':
|
|
strategy.lars = True
|
|
strategy.lars_configs = {
|
|
"lars_coeff": 0.001,
|
|
"lars_weight_decay": 0.0005,
|
|
"epsilon": 0,
|
|
"exclude_from_weight_decay": ["batch_norm", ".b"],
|
|
}
|
|
elif name == 'lamb':
|
|
strategy.lamb = True
|
|
strategy.lamb_configs = {
|
|
'lamb_weight_decay': 0.01,
|
|
'exclude_from_weight_decay': [],
|
|
}
|
|
elif name == 'localsgd':
|
|
strategy.localsgd = True
|
|
strategy.localsgd_configs = {
|
|
'k_steps': 1,
|
|
'begin_step': 1,
|
|
}
|
|
elif name == 'adaptive_localsgd':
|
|
strategy.adaptive_localsgd = True
|
|
strategy.adaptive_localsgd_configs = {
|
|
'init_k_steps': 1,
|
|
'begin_step': 1,
|
|
}
|
|
elif name == "gradient_merge":
|
|
strategy.gradient_merge = True
|
|
strategy.gradient_merge_configs = {"k_steps": 2, "avg": True}
|
|
elif name == "sharding":
|
|
strategy.sharding = True
|
|
strategy.sharding_configs = {"fuse_broadcast_MB": 0.2}
|
|
elif name == "recompute-offload":
|
|
strategy.recompute = True
|
|
strategy.recompute_configs = {
|
|
"checkpoints": ["fc_0.tmp_2", "fc_1.tmp_2"],
|
|
"enable_offload": True,
|
|
"checkpoint_shape": [256]
|
|
}
|
|
else:
|
|
raise NotImplementedError()
|