You can not select more than 25 topics
Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
936 lines
36 KiB
936 lines
36 KiB
# Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved.
|
|
#
|
|
# Licensed under the Apache License, Version 2.0 (the "License");
|
|
# you may not use this file except in compliance with the License.
|
|
# You may obtain a copy of the License at
|
|
#
|
|
# http://www.apache.org/licenses/LICENSE-2.0
|
|
#
|
|
# Unless required by applicable law or agreed to in writing, software
|
|
# distributed under the License is distributed on an "AS IS" BASIS,
|
|
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
# See the License for the specific language governing permissions and
|
|
# limitations under the License.
|
|
|
|
from __future__ import print_function
|
|
|
|
import numpy as np
|
|
import six
|
|
|
|
import paddle
|
|
import paddle.fluid as fluid
|
|
from paddle.fluid.dygraph import Embedding, LayerNorm, Linear, to_variable, Layer
|
|
|
|
from test_dist_base import runtime_main, TestParallelDyGraphRunnerBase
|
|
"""
|
|
Note(chenweihang): To compare loss of single-card and multi-card
|
|
in our dist test framework, two parameters need to be adjusted:
|
|
1. set the dropout rate to 0.
|
|
2. set the weights for Transformer.forward to constant.
|
|
3. to test sparse optimize, set weight_sharing to be False
|
|
"""
|
|
|
|
|
|
class TrainTaskConfig(object):
|
|
"""
|
|
TrainTaskConfig
|
|
"""
|
|
# the epoch number to train.
|
|
pass_num = 20
|
|
# the number of sequences contained in a mini-batch.
|
|
# deprecated, set batch_size in args.
|
|
batch_size = 32
|
|
# the hyper parameters for Adam optimizer.
|
|
# This static learning_rate will be multiplied to the LearningRateScheduler
|
|
# derived learning rate the to get the final learning rate.
|
|
learning_rate = 2.0
|
|
beta1 = 0.9
|
|
beta2 = 0.997
|
|
eps = 1e-9
|
|
# the parameters for learning rate scheduling.
|
|
warmup_steps = 8000
|
|
# the weight used to mix up the ground-truth distribution and the fixed
|
|
# uniform distribution in label smoothing when training.
|
|
# Set this as zero if label smoothing is not wanted.
|
|
label_smooth_eps = 0.1
|
|
|
|
|
|
class ModelHyperParams(object):
|
|
# These following five vocabularies related configurations will be set
|
|
# automatically according to the passed vocabulary path and special tokens.
|
|
# size of source word dictionary.
|
|
src_vocab_size = 10000
|
|
# size of target word dictionay
|
|
trg_vocab_size = 10000
|
|
# index for <bos> token
|
|
bos_idx = 0
|
|
# index for <eos> token
|
|
eos_idx = 1
|
|
# index for <unk> token
|
|
unk_idx = 2
|
|
# max length of sequences deciding the size of position encoding table.
|
|
max_length = 4
|
|
# the dimension for word embeddings, which is also the last dimension of
|
|
# the input and output of multi-head attention, position-wise feed-forward
|
|
# networks, encoder and decoder.
|
|
d_model = 512
|
|
# size of the hidden layer in position-wise feed-forward networks.
|
|
d_inner_hid = 2048
|
|
# the dimension that keys are projected to for dot-product attention.
|
|
d_key = 64
|
|
# the dimension that values are projected to for dot-product attention.
|
|
d_value = 64
|
|
# number of head used in multi-head attention.
|
|
n_head = 8
|
|
# number of sub-layers to be stacked in the encoder and decoder.
|
|
n_layer = 6
|
|
# dropout rates of different modules.
|
|
prepostprocess_dropout = 0
|
|
attention_dropout = 0
|
|
relu_dropout = 0
|
|
# to process before each sub-layer
|
|
preprocess_cmd = "n" # layer normalization
|
|
# to process after each sub-layer
|
|
postprocess_cmd = "da" # dropout + residual connection
|
|
# random seed used in dropout for CE.
|
|
dropout_seed = None
|
|
# the flag indicating whether to share embedding and softmax weights.
|
|
# vocabularies in source and target should be same for weight sharing.
|
|
weight_sharing = False
|
|
|
|
|
|
# The placeholder for batch_size in compile time. Must be -1 currently to be
|
|
# consistent with some ops' infer-shape output in compile time, such as the
|
|
# sequence_expand op used in beamsearch decoder.
|
|
batch_size = -1
|
|
# The placeholder for squence length in compile time.
|
|
seq_len = ModelHyperParams.max_length
|
|
# Here list the data shapes and data types of all inputs.
|
|
# The shapes here act as placeholder and are set to pass the infer-shape in
|
|
# compile time.
|
|
input_descs = {
|
|
# The actual data shape of src_word is:
|
|
# [batch_size, max_src_len_in_batch, 1]
|
|
"src_word": [(batch_size, seq_len, 1), "int64", 2],
|
|
# The actual data shape of src_pos is:
|
|
# [batch_size, max_src_len_in_batch, 1]
|
|
"src_pos": [(batch_size, seq_len, 1), "int64"],
|
|
# This input is used to remove attention weights on paddings in the
|
|
# encoder.
|
|
# The actual data shape of src_slf_attn_bias is:
|
|
# [batch_size, n_head, max_src_len_in_batch, max_src_len_in_batch]
|
|
"src_slf_attn_bias":
|
|
[(batch_size, ModelHyperParams.n_head, seq_len, seq_len), "float32"],
|
|
# The actual data shape of trg_word is:
|
|
# [batch_size, max_trg_len_in_batch, 1]
|
|
"trg_word": [(batch_size, seq_len, 1), "int64",
|
|
2], # lod_level is only used in fast decoder.
|
|
# The actual data shape of trg_pos is:
|
|
# [batch_size, max_trg_len_in_batch, 1]
|
|
"trg_pos": [(batch_size, seq_len, 1), "int64"],
|
|
# This input is used to remove attention weights on paddings and
|
|
# subsequent words in the decoder.
|
|
# The actual data shape of trg_slf_attn_bias is:
|
|
# [batch_size, n_head, max_trg_len_in_batch, max_trg_len_in_batch]
|
|
"trg_slf_attn_bias":
|
|
[(batch_size, ModelHyperParams.n_head, seq_len, seq_len), "float32"],
|
|
# This input is used to remove attention weights on paddings of the source
|
|
# input in the encoder-decoder attention.
|
|
# The actual data shape of trg_src_attn_bias is:
|
|
# [batch_size, n_head, max_trg_len_in_batch, max_src_len_in_batch]
|
|
"trg_src_attn_bias":
|
|
[(batch_size, ModelHyperParams.n_head, seq_len, seq_len), "float32"],
|
|
# This input is used in independent decoder program for inference.
|
|
# The actual data shape of enc_output is:
|
|
# [batch_size, max_src_len_in_batch, d_model]
|
|
"enc_output": [(batch_size, seq_len, ModelHyperParams.d_model), "float32"],
|
|
# The actual data shape of label_word is:
|
|
# [batch_size * max_trg_len_in_batch, 1]
|
|
"lbl_word": [(batch_size * seq_len, 1), "int64"],
|
|
# This input is used to mask out the loss of paddding tokens.
|
|
# The actual data shape of label_weight is:
|
|
# [batch_size * max_trg_len_in_batch, 1]
|
|
"lbl_weight": [(batch_size * seq_len, 1), "float32"],
|
|
# This input is used in beam-search decoder.
|
|
"init_score": [(batch_size, 1), "float32", 2],
|
|
# This input is used in beam-search decoder for the first gather
|
|
# (cell states updation)
|
|
"init_idx": [(batch_size, ), "int32"],
|
|
}
|
|
|
|
# Names of word embedding table which might be reused for weight sharing.
|
|
word_emb_param_names = (
|
|
"src_word_emb_table",
|
|
"trg_word_emb_table", )
|
|
# Names of position encoding table which will be initialized externally.
|
|
pos_enc_param_names = (
|
|
"src_pos_enc_table",
|
|
"trg_pos_enc_table", )
|
|
# separated inputs for different usages.
|
|
encoder_data_input_fields = (
|
|
"src_word",
|
|
"src_pos",
|
|
"src_slf_attn_bias", )
|
|
decoder_data_input_fields = (
|
|
"trg_word",
|
|
"trg_pos",
|
|
"trg_slf_attn_bias",
|
|
"trg_src_attn_bias",
|
|
"enc_output", )
|
|
label_data_input_fields = (
|
|
"lbl_word",
|
|
"lbl_weight", )
|
|
# In fast decoder, trg_pos (only containing the current time step) is generated
|
|
# by ops and trg_slf_attn_bias is not needed.
|
|
fast_decoder_data_input_fields = (
|
|
"trg_word",
|
|
# "init_score",
|
|
# "init_idx",
|
|
"trg_src_attn_bias", )
|
|
|
|
|
|
def position_encoding_init(n_position, d_pos_vec):
|
|
"""
|
|
Generate the initial values for the sinusoid position encoding table.
|
|
"""
|
|
channels = d_pos_vec
|
|
position = np.arange(n_position)
|
|
num_timescales = channels // 2
|
|
log_timescale_increment = (np.log(float(1e4) / float(1)) /
|
|
(num_timescales - 1))
|
|
inv_timescales = np.exp(np.arange(
|
|
num_timescales)) * -log_timescale_increment
|
|
scaled_time = np.expand_dims(position, 1) * np.expand_dims(inv_timescales,
|
|
0)
|
|
signal = np.concatenate([np.sin(scaled_time), np.cos(scaled_time)], axis=1)
|
|
signal = np.pad(signal, [[0, 0], [0, np.mod(channels, 2)]], 'constant')
|
|
position_enc = signal
|
|
return position_enc.astype("float32")
|
|
|
|
|
|
pos_inp1 = position_encoding_init(ModelHyperParams.max_length,
|
|
ModelHyperParams.d_model)
|
|
pos_inp2 = position_encoding_init(ModelHyperParams.max_length,
|
|
ModelHyperParams.d_model)
|
|
|
|
|
|
class PrePostProcessLayer(Layer):
|
|
def __init__(self, d_model, process_cmd, shape_len=None):
|
|
super(PrePostProcessLayer, self).__init__()
|
|
for cmd in process_cmd:
|
|
if cmd == "n":
|
|
self._layer_norm = LayerNorm(
|
|
normalized_shape=d_model,
|
|
param_attr=fluid.ParamAttr(
|
|
initializer=fluid.initializer.Constant(1.)),
|
|
bias_attr=fluid.ParamAttr(
|
|
initializer=fluid.initializer.Constant(0.)))
|
|
|
|
def forward(self, prev_out, out, process_cmd, dropout_rate=0.):
|
|
for cmd in process_cmd:
|
|
if cmd == "a": # add residual connection
|
|
out = out + prev_out if prev_out is not None else out
|
|
elif cmd == "n": # add layer normalization
|
|
out = self._layer_norm(out)
|
|
elif cmd == "d": # add dropout
|
|
if dropout_rate:
|
|
out = fluid.layers.dropout(
|
|
out,
|
|
dropout_prob=dropout_rate,
|
|
seed=ModelHyperParams.dropout_seed,
|
|
is_test=False)
|
|
return out
|
|
|
|
|
|
class PositionwiseFeedForwardLayer(Layer):
|
|
def __init__(self, d_inner_hid, d_hid, dropout_rate):
|
|
super(PositionwiseFeedForwardLayer, self).__init__()
|
|
self._i2h = Linear(d_hid, d_inner_hid, act="relu")
|
|
self._h2o = Linear(d_inner_hid, d_hid)
|
|
self._dropout_rate = dropout_rate
|
|
|
|
def forward(self, x):
|
|
hidden = self._i2h(x)
|
|
if self._dropout_rate:
|
|
hidden = fluid.layers.dropout(
|
|
hidden,
|
|
dropout_prob=self._dropout_rate,
|
|
seed=ModelHyperParams.dropout_seed,
|
|
is_test=False)
|
|
out = self._h2o(hidden)
|
|
return out
|
|
|
|
|
|
class MultiHeadAttentionLayer(Layer):
|
|
def __init__(self,
|
|
d_key,
|
|
d_value,
|
|
d_model,
|
|
n_head=1,
|
|
dropout_rate=0.,
|
|
cache=None,
|
|
gather_idx=None,
|
|
static_kv=False):
|
|
super(MultiHeadAttentionLayer, self).__init__()
|
|
self._n_head = n_head
|
|
self._d_key = d_key
|
|
self._d_value = d_value
|
|
self._d_model = d_model
|
|
self._dropout_rate = dropout_rate
|
|
self._q_fc = Linear(self._d_model, d_key * n_head, bias_attr=False)
|
|
self._k_fc = Linear(self._d_model, d_key * n_head, bias_attr=False)
|
|
self._v_fc = Linear(self._d_model, d_value * n_head, bias_attr=False)
|
|
self._proj_fc = Linear(d_value * n_head, self._d_model, bias_attr=False)
|
|
|
|
def forward(self, queries, keys, values, attn_bias):
|
|
# compute q ,k ,v
|
|
keys = queries if keys is None else keys
|
|
values = keys if values is None else values
|
|
|
|
q = self._q_fc(queries)
|
|
k = self._k_fc(keys)
|
|
v = self._v_fc(values)
|
|
|
|
# split head
|
|
reshaped_q = fluid.layers.reshape(
|
|
x=q, shape=[0, 0, self._n_head, self._d_key], inplace=False)
|
|
transpose_q = fluid.layers.transpose(x=reshaped_q, perm=[0, 2, 1, 3])
|
|
reshaped_k = fluid.layers.reshape(
|
|
x=k, shape=[0, 0, self._n_head, self._d_key], inplace=False)
|
|
transpose_k = fluid.layers.transpose(x=reshaped_k, perm=[0, 2, 1, 3])
|
|
reshaped_v = fluid.layers.reshape(
|
|
x=v, shape=[0, 0, self._n_head, self._d_value], inplace=False)
|
|
transpose_v = fluid.layers.transpose(x=reshaped_v, perm=[0, 2, 1, 3])
|
|
|
|
# scale dot product attention
|
|
product = fluid.layers.matmul(
|
|
x=transpose_q,
|
|
y=transpose_k,
|
|
transpose_y=True,
|
|
alpha=self._d_model**-0.5)
|
|
if attn_bias is not None:
|
|
product += attn_bias
|
|
weights = fluid.layers.softmax(product)
|
|
if self._dropout_rate:
|
|
weights_droped = fluid.layers.dropout(
|
|
weights,
|
|
dropout_prob=self._dropout_rate,
|
|
seed=ModelHyperParams.dropout_seed,
|
|
is_test=False)
|
|
out = fluid.layers.matmul(weights_droped, transpose_v)
|
|
else:
|
|
out = fluid.layers.matmul(weights, transpose_v)
|
|
|
|
# combine heads
|
|
if len(out.shape) != 4:
|
|
raise ValueError("Input(x) should be a 4-D Tensor.")
|
|
trans_x = fluid.layers.transpose(out, perm=[0, 2, 1, 3])
|
|
final_out = fluid.layers.reshape(
|
|
x=trans_x,
|
|
shape=[0, 0, trans_x.shape[2] * trans_x.shape[3]],
|
|
inplace=False)
|
|
|
|
# fc to output
|
|
proj_out = self._proj_fc(final_out)
|
|
return proj_out
|
|
|
|
|
|
class EncoderSubLayer(Layer):
|
|
def __init__(self,
|
|
n_head,
|
|
d_key,
|
|
d_value,
|
|
d_model,
|
|
d_inner_hid,
|
|
prepostprocess_dropout,
|
|
attention_dropout,
|
|
relu_dropout,
|
|
preprocess_cmd="n",
|
|
postprocess_cmd="da"):
|
|
|
|
super(EncoderSubLayer, self).__init__()
|
|
self._preprocess_cmd = preprocess_cmd
|
|
self._postprocess_cmd = postprocess_cmd
|
|
self._prepostprocess_dropout = prepostprocess_dropout
|
|
|
|
self._preprocess_layer = PrePostProcessLayer(d_model,
|
|
self._preprocess_cmd, 3)
|
|
self._multihead_attention_layer = MultiHeadAttentionLayer(
|
|
d_key, d_value, d_model, n_head, attention_dropout)
|
|
self._postprocess_layer = PrePostProcessLayer(
|
|
d_model, self._postprocess_cmd, None)
|
|
self._preprocess_layer2 = PrePostProcessLayer(d_model,
|
|
self._preprocess_cmd, 3)
|
|
self._positionwise_feed_forward = PositionwiseFeedForwardLayer(
|
|
d_inner_hid, d_model, relu_dropout)
|
|
self._postprocess_layer2 = PrePostProcessLayer(
|
|
d_model, self._postprocess_cmd, None)
|
|
|
|
def forward(self, enc_input, attn_bias):
|
|
pre_process_multihead = self._preprocess_layer(
|
|
None, enc_input, self._preprocess_cmd, self._prepostprocess_dropout)
|
|
attn_output = self._multihead_attention_layer(pre_process_multihead,
|
|
None, None, attn_bias)
|
|
attn_output = self._postprocess_layer(enc_input, attn_output,
|
|
self._postprocess_cmd,
|
|
self._prepostprocess_dropout)
|
|
pre_process2_output = self._preprocess_layer2(
|
|
None, attn_output, self._preprocess_cmd,
|
|
self._prepostprocess_dropout)
|
|
ffd_output = self._positionwise_feed_forward(pre_process2_output)
|
|
return self._postprocess_layer2(attn_output, ffd_output,
|
|
self._postprocess_cmd,
|
|
self._prepostprocess_dropout)
|
|
|
|
|
|
class EncoderLayer(Layer):
|
|
def __init__(self,
|
|
n_layer,
|
|
n_head,
|
|
d_key,
|
|
d_value,
|
|
d_model,
|
|
d_inner_hid,
|
|
prepostprocess_dropout,
|
|
attention_dropout,
|
|
relu_dropout,
|
|
preprocess_cmd="n",
|
|
postprocess_cmd="da"):
|
|
|
|
super(EncoderLayer, self).__init__()
|
|
self._preprocess_cmd = preprocess_cmd
|
|
self._encoder_sublayers = list()
|
|
self._prepostprocess_dropout = prepostprocess_dropout
|
|
self._n_layer = n_layer
|
|
self._preprocess_layer = PrePostProcessLayer(d_model,
|
|
self._preprocess_cmd, 3)
|
|
for i in range(n_layer):
|
|
self._encoder_sublayers.append(
|
|
self.add_sublayer(
|
|
'esl_%d' % i,
|
|
EncoderSubLayer(n_head, d_key, d_value, d_model,
|
|
d_inner_hid, prepostprocess_dropout,
|
|
attention_dropout, relu_dropout,
|
|
preprocess_cmd, postprocess_cmd)))
|
|
|
|
def forward(self, enc_input, attn_bias):
|
|
for i in range(self._n_layer):
|
|
enc_output = self._encoder_sublayers[i](enc_input, attn_bias)
|
|
enc_input = enc_output
|
|
|
|
return self._preprocess_layer(None, enc_output, self._preprocess_cmd,
|
|
self._prepostprocess_dropout)
|
|
|
|
|
|
class PrepareEncoderDecoderLayer(Layer):
|
|
def __init__(self,
|
|
src_vocab_size,
|
|
src_emb_dim,
|
|
src_max_len,
|
|
dropout_rate,
|
|
is_sparse=False,
|
|
word_emb_param_name=None,
|
|
pos_enc_param_name=None):
|
|
super(PrepareEncoderDecoderLayer, self).__init__()
|
|
self._src_max_len = src_max_len
|
|
self._src_emb_dim = src_emb_dim
|
|
self._src_vocab_size = src_vocab_size
|
|
self._dropout_rate = dropout_rate
|
|
self._input_emb = Embedding(
|
|
size=[src_vocab_size, src_emb_dim],
|
|
is_sparse=is_sparse,
|
|
padding_idx=0,
|
|
param_attr=fluid.ParamAttr(
|
|
name=word_emb_param_name,
|
|
initializer=fluid.initializer.Normal(0., src_emb_dim**-0.5)))
|
|
|
|
if pos_enc_param_name is pos_enc_param_names[0]:
|
|
pos_inp = pos_inp1
|
|
else:
|
|
pos_inp = pos_inp2
|
|
self._pos_emb = Embedding(
|
|
size=[self._src_max_len, src_emb_dim],
|
|
is_sparse=is_sparse,
|
|
param_attr=fluid.ParamAttr(
|
|
name=pos_enc_param_name,
|
|
initializer=fluid.initializer.NumpyArrayInitializer(pos_inp),
|
|
trainable=False))
|
|
|
|
def forward(self, src_word, src_pos):
|
|
src_word_emb = self._input_emb(src_word)
|
|
src_word_emb = fluid.layers.scale(
|
|
x=src_word_emb, scale=self._src_emb_dim**0.5)
|
|
# # TODO change this to fit dynamic length input
|
|
src_pos_emb = self._pos_emb(src_pos)
|
|
src_pos_emb.stop_gradient = True
|
|
enc_input = src_word_emb + src_pos_emb
|
|
return fluid.layers.dropout(
|
|
enc_input,
|
|
dropout_prob=self._dropout_rate,
|
|
seed=ModelHyperParams.dropout_seed,
|
|
is_test=False) if self._dropout_rate else enc_input
|
|
|
|
|
|
class WrapEncoderLayer(Layer):
|
|
def __init__(self,
|
|
src_vocab_size,
|
|
max_length,
|
|
n_layer,
|
|
n_head,
|
|
d_key,
|
|
d_value,
|
|
d_model,
|
|
d_inner_hid,
|
|
prepostprocess_dropout,
|
|
attention_dropout,
|
|
relu_dropout,
|
|
preprocess_cmd,
|
|
postprocess_cmd,
|
|
weight_sharing,
|
|
is_sparse=False):
|
|
"""
|
|
The wrapper assembles together all needed layers for the encoder.
|
|
"""
|
|
super(WrapEncoderLayer, self).__init__()
|
|
|
|
self._prepare_encoder_layer = PrepareEncoderDecoderLayer(
|
|
src_vocab_size,
|
|
d_model,
|
|
max_length,
|
|
prepostprocess_dropout,
|
|
is_sparse=is_sparse,
|
|
word_emb_param_name=word_emb_param_names[0],
|
|
pos_enc_param_name=pos_enc_param_names[0])
|
|
self._encoder = EncoderLayer(n_layer, n_head, d_key, d_value, d_model,
|
|
d_inner_hid, prepostprocess_dropout,
|
|
attention_dropout, relu_dropout,
|
|
preprocess_cmd, postprocess_cmd)
|
|
|
|
def forward(self, enc_inputs):
|
|
src_word, src_pos, src_slf_attn_bias = enc_inputs
|
|
enc_input = self._prepare_encoder_layer(src_word, src_pos)
|
|
enc_output = self._encoder(enc_input, src_slf_attn_bias)
|
|
return enc_output
|
|
|
|
|
|
class DecoderSubLayer(Layer):
|
|
def __init__(self,
|
|
n_head,
|
|
d_key,
|
|
d_value,
|
|
d_model,
|
|
d_inner_hid,
|
|
prepostprocess_dropout,
|
|
attention_dropout,
|
|
relu_dropout,
|
|
preprocess_cmd,
|
|
postprocess_cmd,
|
|
cache=None,
|
|
gather_idx=None):
|
|
super(DecoderSubLayer, self).__init__()
|
|
self._postprocess_cmd = postprocess_cmd
|
|
self._preprocess_cmd = preprocess_cmd
|
|
self._prepostprcess_dropout = prepostprocess_dropout
|
|
self._pre_process_layer = PrePostProcessLayer(d_model, preprocess_cmd,
|
|
3)
|
|
self._multihead_attention_layer = MultiHeadAttentionLayer(
|
|
d_key,
|
|
d_value,
|
|
d_model,
|
|
n_head,
|
|
attention_dropout,
|
|
cache=cache,
|
|
gather_idx=gather_idx)
|
|
self._post_process_layer = PrePostProcessLayer(d_model, postprocess_cmd,
|
|
None)
|
|
self._pre_process_layer2 = PrePostProcessLayer(d_model, preprocess_cmd,
|
|
3)
|
|
self._multihead_attention_layer2 = MultiHeadAttentionLayer(
|
|
d_key,
|
|
d_value,
|
|
d_model,
|
|
n_head,
|
|
attention_dropout,
|
|
cache=cache,
|
|
gather_idx=gather_idx,
|
|
static_kv=True)
|
|
self._post_process_layer2 = PrePostProcessLayer(d_model,
|
|
postprocess_cmd, None)
|
|
self._pre_process_layer3 = PrePostProcessLayer(d_model, preprocess_cmd,
|
|
3)
|
|
self._positionwise_feed_forward_layer = PositionwiseFeedForwardLayer(
|
|
d_inner_hid, d_model, relu_dropout)
|
|
self._post_process_layer3 = PrePostProcessLayer(d_model,
|
|
postprocess_cmd, None)
|
|
|
|
def forward(self, dec_input, enc_output, slf_attn_bias, dec_enc_attn_bias):
|
|
pre_process_rlt = self._pre_process_layer(
|
|
None, dec_input, self._preprocess_cmd, self._prepostprcess_dropout)
|
|
slf_attn_output = self._multihead_attention_layer(pre_process_rlt, None,
|
|
None, slf_attn_bias)
|
|
slf_attn_output_pp = self._post_process_layer(
|
|
dec_input, slf_attn_output, self._postprocess_cmd,
|
|
self._prepostprcess_dropout)
|
|
pre_process_rlt2 = self._pre_process_layer2(None, slf_attn_output_pp,
|
|
self._preprocess_cmd,
|
|
self._prepostprcess_dropout)
|
|
enc_attn_output_pp = self._multihead_attention_layer2(
|
|
pre_process_rlt2, enc_output, enc_output, dec_enc_attn_bias)
|
|
enc_attn_output = self._post_process_layer2(
|
|
slf_attn_output_pp, enc_attn_output_pp, self._postprocess_cmd,
|
|
self._prepostprcess_dropout)
|
|
pre_process_rlt3 = self._pre_process_layer3(None, enc_attn_output,
|
|
self._preprocess_cmd,
|
|
self._prepostprcess_dropout)
|
|
ffd_output = self._positionwise_feed_forward_layer(pre_process_rlt3)
|
|
dec_output = self._post_process_layer3(enc_attn_output, ffd_output,
|
|
self._postprocess_cmd,
|
|
self._prepostprcess_dropout)
|
|
return dec_output
|
|
|
|
|
|
class DecoderLayer(Layer):
|
|
def __init__(self,
|
|
n_layer,
|
|
n_head,
|
|
d_key,
|
|
d_value,
|
|
d_model,
|
|
d_inner_hid,
|
|
prepostprocess_dropout,
|
|
attention_dropout,
|
|
relu_dropout,
|
|
preprocess_cmd,
|
|
postprocess_cmd,
|
|
caches=None,
|
|
gather_idx=None):
|
|
super(DecoderLayer, self).__init__()
|
|
self._pre_process_layer = PrePostProcessLayer(d_model, preprocess_cmd,
|
|
3)
|
|
self._decoder_sub_layers = list()
|
|
self._n_layer = n_layer
|
|
self._preprocess_cmd = preprocess_cmd
|
|
self._prepostprocess_dropout = prepostprocess_dropout
|
|
for i in range(n_layer):
|
|
self._decoder_sub_layers.append(
|
|
self.add_sublayer(
|
|
'dsl_%d' % i,
|
|
DecoderSubLayer(
|
|
n_head,
|
|
d_key,
|
|
d_value,
|
|
d_model,
|
|
d_inner_hid,
|
|
prepostprocess_dropout,
|
|
attention_dropout,
|
|
relu_dropout,
|
|
preprocess_cmd,
|
|
postprocess_cmd,
|
|
cache=None if caches is None else caches[i],
|
|
gather_idx=gather_idx)))
|
|
|
|
def forward(self, dec_input, enc_output, dec_slf_attn_bias,
|
|
dec_enc_attn_bias):
|
|
for i in range(self._n_layer):
|
|
tmp_dec_output = self._decoder_sub_layers[i](
|
|
dec_input, enc_output, dec_slf_attn_bias, dec_enc_attn_bias)
|
|
dec_input = tmp_dec_output
|
|
|
|
dec_output = self._pre_process_layer(None, tmp_dec_output,
|
|
self._preprocess_cmd,
|
|
self._prepostprocess_dropout)
|
|
return dec_output
|
|
|
|
|
|
class WrapDecoderLayer(Layer):
|
|
def __init__(self,
|
|
trg_vocab_size,
|
|
max_length,
|
|
n_layer,
|
|
n_head,
|
|
d_key,
|
|
d_value,
|
|
d_model,
|
|
d_inner_hid,
|
|
prepostprocess_dropout,
|
|
attention_dropout,
|
|
relu_dropout,
|
|
preprocess_cmd,
|
|
postprocess_cmd,
|
|
weight_sharing,
|
|
caches=None,
|
|
gather_idx=None,
|
|
is_sparse=False):
|
|
"""
|
|
The wrapper assembles together all needed layers for the encoder.
|
|
"""
|
|
super(WrapDecoderLayer, self).__init__()
|
|
|
|
self._prepare_decoder_layer = PrepareEncoderDecoderLayer(
|
|
trg_vocab_size,
|
|
d_model,
|
|
max_length,
|
|
prepostprocess_dropout,
|
|
is_sparse=is_sparse,
|
|
word_emb_param_name=word_emb_param_names[1],
|
|
pos_enc_param_name=pos_enc_param_names[1])
|
|
self._decoder_layer = DecoderLayer(
|
|
n_layer,
|
|
n_head,
|
|
d_key,
|
|
d_value,
|
|
d_model,
|
|
d_inner_hid,
|
|
prepostprocess_dropout,
|
|
attention_dropout,
|
|
relu_dropout,
|
|
preprocess_cmd,
|
|
postprocess_cmd,
|
|
caches=caches,
|
|
gather_idx=gather_idx)
|
|
self._weight_sharing = weight_sharing
|
|
if not weight_sharing:
|
|
self._fc = Linear(d_model, trg_vocab_size, bias_attr=False)
|
|
|
|
def forward(self, dec_inputs=None, enc_output=None):
|
|
trg_word, trg_pos, trg_slf_attn_bias, trg_src_attn_bias = dec_inputs
|
|
dec_input = self._prepare_decoder_layer(trg_word, trg_pos)
|
|
dec_output = self._decoder_layer(dec_input, enc_output,
|
|
trg_slf_attn_bias, trg_src_attn_bias)
|
|
|
|
dec_output_reshape = fluid.layers.reshape(
|
|
dec_output, shape=[-1, dec_output.shape[-1]], inplace=False)
|
|
|
|
if self._weight_sharing:
|
|
predict = fluid.layers.matmul(
|
|
x=dec_output_reshape,
|
|
y=self._prepare_decoder_layer._input_emb.weight,
|
|
transpose_y=True)
|
|
else:
|
|
predict = self._fc(dec_output_reshape)
|
|
|
|
if dec_inputs is None:
|
|
# Return probs for independent decoder program.
|
|
predict_out = fluid.layers.softmax(predict)
|
|
return predict_out
|
|
return predict
|
|
|
|
|
|
class TransFormer(Layer):
|
|
def __init__(self,
|
|
src_vocab_size,
|
|
trg_vocab_size,
|
|
max_length,
|
|
n_layer,
|
|
n_head,
|
|
d_key,
|
|
d_value,
|
|
d_model,
|
|
d_inner_hid,
|
|
prepostprocess_dropout,
|
|
attention_dropout,
|
|
relu_dropout,
|
|
preprocess_cmd,
|
|
postprocess_cmd,
|
|
weight_sharing,
|
|
label_smooth_eps,
|
|
use_py_reader=False,
|
|
is_test=False,
|
|
is_sparse=False):
|
|
super(TransFormer, self).__init__()
|
|
self._label_smooth_eps = label_smooth_eps
|
|
self._trg_vocab_size = trg_vocab_size
|
|
if weight_sharing:
|
|
assert src_vocab_size == trg_vocab_size, (
|
|
"Vocabularies in source and target should be same for weight sharing."
|
|
)
|
|
self._wrap_encoder_layer = WrapEncoderLayer(
|
|
src_vocab_size,
|
|
max_length,
|
|
n_layer,
|
|
n_head,
|
|
d_key,
|
|
d_value,
|
|
d_model,
|
|
d_inner_hid,
|
|
prepostprocess_dropout,
|
|
attention_dropout,
|
|
relu_dropout,
|
|
preprocess_cmd,
|
|
postprocess_cmd,
|
|
weight_sharing,
|
|
is_sparse=is_sparse)
|
|
self._wrap_decoder_layer = WrapDecoderLayer(
|
|
trg_vocab_size,
|
|
max_length,
|
|
n_layer,
|
|
n_head,
|
|
d_key,
|
|
d_value,
|
|
d_model,
|
|
d_inner_hid,
|
|
prepostprocess_dropout,
|
|
attention_dropout,
|
|
relu_dropout,
|
|
preprocess_cmd,
|
|
postprocess_cmd,
|
|
weight_sharing,
|
|
is_sparse=is_sparse)
|
|
|
|
if weight_sharing:
|
|
self._wrap_decoder_layer._prepare_decoder_layer._input_emb.weight = self._wrap_encoder_layer._prepare_encoder_layer._input_emb.weight
|
|
|
|
def forward(self, enc_inputs, dec_inputs, label, weights):
|
|
enc_output = self._wrap_encoder_layer(enc_inputs)
|
|
predict = self._wrap_decoder_layer(dec_inputs, enc_output)
|
|
if self._label_smooth_eps:
|
|
label_out = fluid.layers.label_smooth(
|
|
label=fluid.layers.one_hot(
|
|
input=label, depth=self._trg_vocab_size),
|
|
epsilon=self._label_smooth_eps)
|
|
|
|
cost = fluid.layers.softmax_with_cross_entropy(
|
|
logits=predict,
|
|
label=label_out,
|
|
soft_label=True if self._label_smooth_eps else False)
|
|
weighted_cost = cost * weights
|
|
sum_cost = fluid.layers.reduce_sum(weighted_cost)
|
|
token_num = fluid.layers.reduce_sum(weights)
|
|
token_num.stop_gradient = True
|
|
avg_cost = sum_cost / token_num
|
|
return sum_cost, avg_cost, predict, token_num
|
|
|
|
|
|
# how many batches we use
|
|
batch_num = 5
|
|
|
|
|
|
def fake_data_reader():
|
|
def __reader__():
|
|
iteration = TrainTaskConfig.batch_size * batch_num
|
|
for _ in six.moves.range(iteration):
|
|
# random data
|
|
np.random.seed = 90
|
|
src_word_np = np.arange(1, seq_len + 1).reshape(
|
|
[seq_len]).astype('int64')
|
|
src_pos_np = np.random.randint(
|
|
1, seq_len, size=(seq_len), dtype='int64')
|
|
src_slf_attn_bias_np = np.random.randn(
|
|
ModelHyperParams.n_head, seq_len, seq_len).astype('float32')
|
|
|
|
trg_word_np = np.arange(1, seq_len + 1).reshape(
|
|
[seq_len]).astype('int64')
|
|
trg_pos_np = np.random.randint(
|
|
1, seq_len, size=(seq_len), dtype='int64')
|
|
trg_slf_attn_bias_np = np.random.randn(
|
|
ModelHyperParams.n_head, seq_len, seq_len).astype('float32')
|
|
trg_src_attn_bias_np = np.random.randn(
|
|
ModelHyperParams.n_head, seq_len, seq_len).astype('float32')
|
|
|
|
lbl_word_np = np.random.randint(
|
|
1,
|
|
ModelHyperParams.src_vocab_size - 1,
|
|
size=(seq_len, 1),
|
|
dtype='int64')
|
|
|
|
# Note(chenweihang): weight will introduce diff, so use constant here
|
|
lbl_weight_np = np.ones((seq_len, 1)).astype('int64')
|
|
|
|
data_inputs = [
|
|
src_word_np, src_pos_np, src_slf_attn_bias_np, trg_word_np,
|
|
trg_pos_np, trg_slf_attn_bias_np, trg_src_attn_bias_np,
|
|
lbl_word_np, lbl_weight_np
|
|
]
|
|
|
|
yield data_inputs
|
|
|
|
return __reader__
|
|
|
|
|
|
def np_to_variable(data):
|
|
batch_size = len(data)
|
|
src_word_np = np.array([x[0] for x in data]).astype('int64')
|
|
src_pos_np = np.array([x[1] for x in data]).astype('int64')
|
|
src_slf_attn_bias_np = np.array([x[2] for x in data]).astype('float32')
|
|
trg_word_np = np.array([x[3] for x in data]).astype('int64')
|
|
trg_pos_np = np.array([x[4] for x in data]).astype('int64')
|
|
trg_slf_attn_bias_np = np.array([x[5] for x in data]).astype('float32')
|
|
trg_src_attn_bias_np = np.array([x[6] for x in data]).astype('float32')
|
|
lbl_word_np = np.array([x[7] for x in data]).astype('int64')
|
|
lbl_weight_np = np.array([x[8] for x in data]).astype('float32')
|
|
|
|
lbl_word_np = lbl_word_np.reshape(batch_size * seq_len, 1)
|
|
lbl_weight_np = lbl_weight_np.reshape(batch_size * seq_len, 1)
|
|
|
|
data_inputs = [
|
|
src_word_np, src_pos_np, src_slf_attn_bias_np, trg_word_np, trg_pos_np,
|
|
trg_slf_attn_bias_np, trg_src_attn_bias_np, lbl_word_np, lbl_weight_np
|
|
]
|
|
|
|
var_inputs = []
|
|
for i, field in enumerate(encoder_data_input_fields +
|
|
decoder_data_input_fields[:-1] +
|
|
label_data_input_fields):
|
|
var_inputs.append(to_variable(data_inputs[i], name=field))
|
|
|
|
enc_inputs = var_inputs[0:len(encoder_data_input_fields)]
|
|
dec_inputs = var_inputs[len(encoder_data_input_fields):len(
|
|
encoder_data_input_fields) + len(decoder_data_input_fields[:-1])]
|
|
label = var_inputs[-2]
|
|
weights = var_inputs[-1]
|
|
|
|
return enc_inputs, dec_inputs, label, weights
|
|
|
|
|
|
naive_optimize = True
|
|
|
|
|
|
class TestTransformer(TestParallelDyGraphRunnerBase):
|
|
def get_model(self):
|
|
model = TransFormer(
|
|
ModelHyperParams.src_vocab_size,
|
|
ModelHyperParams.trg_vocab_size,
|
|
ModelHyperParams.max_length + 1,
|
|
ModelHyperParams.n_layer,
|
|
ModelHyperParams.n_head,
|
|
ModelHyperParams.d_key,
|
|
ModelHyperParams.d_value,
|
|
ModelHyperParams.d_model,
|
|
ModelHyperParams.d_inner_hid,
|
|
ModelHyperParams.prepostprocess_dropout,
|
|
ModelHyperParams.attention_dropout,
|
|
ModelHyperParams.relu_dropout,
|
|
ModelHyperParams.preprocess_cmd,
|
|
ModelHyperParams.postprocess_cmd,
|
|
ModelHyperParams.weight_sharing,
|
|
TrainTaskConfig.label_smooth_eps,
|
|
is_sparse=True)
|
|
train_reader = paddle.batch(fake_data_reader(),
|
|
TrainTaskConfig.batch_size)
|
|
if naive_optimize:
|
|
optimizer = fluid.optimizer.SGD(learning_rate=0.001,
|
|
parameter_list=model.parameters())
|
|
else:
|
|
optimizer = fluid.optimizer.Adam(
|
|
learning_rate=NoamDecay(ModelHyperParams.d_model,
|
|
TrainTaskConfig.warmup_steps,
|
|
TrainTaskConfig.learning_rate),
|
|
beta1=TrainTaskConfig.beta1,
|
|
beta2=TrainTaskConfig.beta2,
|
|
epsilon=TrainTaskConfig.eps,
|
|
parameter_list=model.parameters())
|
|
|
|
return model, train_reader, optimizer
|
|
|
|
def run_one_loop(self, model, optimizer, batch):
|
|
enc_inputs, dec_inputs, label, weights = np_to_variable(batch)
|
|
|
|
dy_sum_cost, dy_avg_cost, dy_predict, dy_token_num = model(
|
|
enc_inputs, dec_inputs, label, weights)
|
|
|
|
return dy_avg_cost
|
|
|
|
|
|
if __name__ == "__main__":
|
|
runtime_main(TestTransformer)
|