You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
Paddle/python/paddle/fluid/tests/unittests/test_adaptive_avg_pool3d.py

301 lines
11 KiB

# Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
from __future__ import print_function
from __future__ import division
import unittest
import numpy as np
import paddle.fluid.core as core
from op_test import OpTest
import paddle
import paddle.fluid as fluid
from paddle.fluid import Program, program_guard
def adaptive_start_index(index, input_size, output_size):
return int(np.floor(index * input_size / output_size))
def adaptive_end_index(index, input_size, output_size):
return int(np.ceil((index + 1) * input_size / output_size))
def adaptive_pool3d_forward(x,
output_size,
adaptive=True,
data_format='NCDHW',
pool_type='avg'):
N = x.shape[0]
C, D, H, W = [x.shape[1], x.shape[2], x.shape[3], x.shape[4]] \
if data_format == 'NCDHW' else [x.shape[4], x.shape[1], x.shape[2],x.shape[3]]
if (isinstance(output_size, int) or output_size == None):
H_out = output_size
W_out = output_size
D_out = output_size
output_size = [D_out, H_out, W_out]
else:
D_out, H_out, W_out = output_size
if output_size[0] == None:
output_size[0] = D
D_out = D
if output_size[1] == None:
output_size[1] = H
H_out = H
if output_size[2] == None:
output_size[2] = W
W_out = W
out = np.zeros((N, C, D_out, H_out, W_out)) if data_format=='NCDHW' \
else np.zeros((N, D_out, H_out, W_out, C))
for k in range(D_out):
d_start = adaptive_start_index(k, D, output_size[0])
d_end = adaptive_end_index(k, D, output_size[0])
for i in range(H_out):
h_start = adaptive_start_index(i, H, output_size[1])
h_end = adaptive_end_index(i, H, output_size[1])
for j in range(W_out):
w_start = adaptive_start_index(j, W, output_size[2])
w_end = adaptive_end_index(j, W, output_size[2])
if data_format == 'NCDHW':
x_masked = x[:, :, d_start:d_end, h_start:h_end, w_start:
w_end]
if pool_type == 'avg':
field_size = (d_end - d_start) * (h_end - h_start) * (
w_end - w_start)
out[:, :, k, i, j] = np.sum(x_masked,
axis=(2, 3, 4)) / field_size
elif pool_type == 'max':
out[:, :, k, i, j] = np.max(x_masked, axis=(2, 3, 4))
elif data_format == 'NDHWC':
x_masked = x[:, d_start:d_end, h_start:h_end, w_start:
w_end, :]
if pool_type == 'avg':
field_size = (d_end - d_start) * (h_end - h_start) * (
w_end - w_start)
out[:, k, i, j, :] = np.sum(x_masked,
axis=(1, 2, 3)) / field_size
elif pool_type == 'max':
out[:, k, i, j, :] = np.max(x_masked, axis=(1, 2, 3))
return out
class TestAdaptiveAvgPool3DAPI(unittest.TestCase):
def setUp(self):
self.x_np = np.random.random([2, 3, 5, 7, 7]).astype("float32")
self.res_1_np = adaptive_pool3d_forward(
x=self.x_np, output_size=[3, 3, 3], pool_type="avg")
self.res_2_np = adaptive_pool3d_forward(
x=self.x_np, output_size=5, pool_type="avg")
self.res_3_np = adaptive_pool3d_forward(
x=self.x_np, output_size=[2, 3, 5], pool_type="avg")
self.res_4_np = adaptive_pool3d_forward(
x=self.x_np,
output_size=[3, 3, 3],
pool_type="avg",
data_format="NDHWC")
self.res_5_np = adaptive_pool3d_forward(
x=self.x_np, output_size=[None, 3, None], pool_type="avg")
def test_static_graph(self):
for use_cuda in ([False, True]
if core.is_compiled_with_cuda() else [False]):
place = paddle.CUDAPlace(0) if use_cuda else paddle.CPUPlace()
paddle.enable_static()
x = paddle.fluid.data(
name="x", shape=[2, 3, 5, 7, 7], dtype="float32")
out_1 = paddle.nn.functional.adaptive_avg_pool3d(
x=x, output_size=[3, 3, 3])
out_2 = paddle.nn.functional.adaptive_avg_pool3d(x=x, output_size=5)
out_3 = paddle.nn.functional.adaptive_avg_pool3d(
x=x, output_size=[2, 3, 5])
out_4 = paddle.nn.functional.adaptive_avg_pool3d(
x=x, output_size=[3, 3, 3], data_format="NDHWC")
out_5 = paddle.nn.functional.adaptive_avg_pool3d(
x=x, output_size=[None, 3, None])
exe = paddle.static.Executor(place=place)
[res_1, res_2, res_3, res_4, res_5] = exe.run(
fluid.default_main_program(),
feed={"x": self.x_np},
fetch_list=[out_1, out_2, out_3, out_4, out_5])
assert np.allclose(res_1, self.res_1_np)
assert np.allclose(res_2, self.res_2_np)
assert np.allclose(res_3, self.res_3_np)
assert np.allclose(res_4, self.res_4_np)
assert np.allclose(res_5, self.res_5_np)
def test_dynamic_graph(self):
for use_cuda in ([False, True]
if core.is_compiled_with_cuda() else [False]):
place = paddle.CUDAPlace(0) if use_cuda else paddle.CPUPlace()
paddle.disable_static(place=place)
x = paddle.to_tensor(self.x_np)
out_1 = paddle.nn.functional.adaptive_avg_pool3d(
x=x, output_size=[3, 3, 3])
out_2 = paddle.nn.functional.adaptive_avg_pool3d(x=x, output_size=5)
out_3 = paddle.nn.functional.adaptive_avg_pool3d(
x=x, output_size=[2, 3, 5])
out_4 = paddle.nn.functional.adaptive_avg_pool3d(
x=x, output_size=[3, 3, 3], data_format="NDHWC")
out_5 = paddle.nn.functional.adaptive_avg_pool3d(
x=x, output_size=[None, 3, None])
out_6 = paddle.nn.functional.interpolate(
x=x, mode="area", size=[2, 3, 5])
assert np.allclose(out_1.numpy(), self.res_1_np)
assert np.allclose(out_2.numpy(), self.res_2_np)
assert np.allclose(out_3.numpy(), self.res_3_np)
assert np.allclose(out_4.numpy(), self.res_4_np)
assert np.allclose(out_5.numpy(), self.res_5_np)
assert np.allclose(out_6.numpy(), self.res_3_np)
class TestAdaptiveAvgPool3DClassAPI(unittest.TestCase):
def setUp(self):
self.x_np = np.random.random([2, 3, 5, 7, 7]).astype("float32")
self.res_1_np = adaptive_pool3d_forward(
x=self.x_np, output_size=[3, 3, 3], pool_type="avg")
self.res_2_np = adaptive_pool3d_forward(
x=self.x_np, output_size=5, pool_type="avg")
self.res_3_np = adaptive_pool3d_forward(
x=self.x_np, output_size=[2, 3, 5], pool_type="avg")
self.res_4_np = adaptive_pool3d_forward(
x=self.x_np,
output_size=[3, 3, 3],
pool_type="avg",
data_format="NDHWC")
self.res_5_np = adaptive_pool3d_forward(
x=self.x_np, output_size=[None, 3, None], pool_type="avg")
def test_static_graph(self):
for use_cuda in ([False, True]
if core.is_compiled_with_cuda() else [False]):
place = paddle.CUDAPlace(0) if use_cuda else paddle.CPUPlace()
paddle.enable_static()
x = paddle.fluid.data(
name="x", shape=[2, 3, 5, 7, 7], dtype="float32")
adaptive_avg_pool = paddle.nn.AdaptiveAvgPool3D(
output_size=[3, 3, 3])
out_1 = adaptive_avg_pool(x=x)
adaptive_avg_pool = paddle.nn.AdaptiveAvgPool3D(output_size=5)
out_2 = adaptive_avg_pool(x=x)
adaptive_avg_pool = paddle.nn.AdaptiveAvgPool3D(
output_size=[2, 3, 5])
out_3 = adaptive_avg_pool(x=x)
adaptive_avg_pool = paddle.nn.AdaptiveAvgPool3D(
output_size=[3, 3, 3], data_format="NDHWC")
out_4 = adaptive_avg_pool(x=x)
adaptive_avg_pool = paddle.nn.AdaptiveAvgPool3D(
output_size=[None, 3, None])
out_5 = adaptive_avg_pool(x=x)
exe = paddle.static.Executor(place=place)
[res_1, res_2, res_3, res_4, res_5] = exe.run(
fluid.default_main_program(),
feed={"x": self.x_np},
fetch_list=[out_1, out_2, out_3, out_4, out_5])
assert np.allclose(res_1, self.res_1_np)
assert np.allclose(res_2, self.res_2_np)
assert np.allclose(res_3, self.res_3_np)
assert np.allclose(res_4, self.res_4_np)
assert np.allclose(res_5, self.res_5_np)
def test_dynamic_graph(self):
for use_cuda in ([False, True]
if core.is_compiled_with_cuda() else [False]):
place = paddle.CUDAPlace(0) if use_cuda else paddle.CPUPlace()
paddle.disable_static(place=place)
x = paddle.to_tensor(self.x_np)
adaptive_avg_pool = paddle.nn.AdaptiveAvgPool3D(
output_size=[3, 3, 3])
out_1 = adaptive_avg_pool(x=x)
adaptive_avg_pool = paddle.nn.AdaptiveAvgPool3D(output_size=5)
out_2 = adaptive_avg_pool(x=x)
adaptive_avg_pool = paddle.nn.AdaptiveAvgPool3D(
output_size=[2, 3, 5])
out_3 = adaptive_avg_pool(x=x)
adaptive_avg_pool = paddle.nn.AdaptiveAvgPool3D(
output_size=[3, 3, 3], data_format="NDHWC")
out_4 = adaptive_avg_pool(x=x)
adaptive_avg_pool = paddle.nn.AdaptiveAvgPool3D(
output_size=[None, 3, None])
out_5 = adaptive_avg_pool(x=x)
assert np.allclose(out_1.numpy(), self.res_1_np)
assert np.allclose(out_2.numpy(), self.res_2_np)
assert np.allclose(out_3.numpy(), self.res_3_np)
assert np.allclose(out_4.numpy(), self.res_4_np)
assert np.allclose(out_5.numpy(), self.res_5_np)
if __name__ == '__main__':
unittest.main()