You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
Paddle/python/paddle/fluid/tests/unittests/test_adaptive_max_pool1d.py

122 lines
4.3 KiB

# Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import numpy as np
import unittest
from op_test import OpTest, check_out_dtype
import paddle.fluid.core as core
from paddle.fluid import compiler, Program, program_guard
import paddle
import paddle.nn.functional as F
import paddle.fluid as fluid
def adaptive_start_index(index, input_size, output_size):
return int(np.floor(index * input_size / output_size))
def adaptive_end_index(index, input_size, output_size):
return int(np.ceil((index + 1) * input_size / output_size))
def max_pool1D_forward_naive(x,
ksize,
strides,
paddings,
global_pool=0,
ceil_mode=False,
exclusive=False,
adaptive=False,
data_type=np.float64):
N, C, L = x.shape
if global_pool == 1:
ksize = [L]
if adaptive:
L_out = ksize[0]
else:
L_out = (L - ksize[0] + 2 * paddings[0] + strides[0] - 1
) // strides[0] + 1 if ceil_mode else (
L - ksize[0] + 2 * paddings[0]) // strides[0] + 1
out = np.zeros((N, C, L_out))
for i in range(L_out):
if adaptive:
r_start = adaptive_start_index(i, L, ksize[0])
r_end = adaptive_end_index(i, L, ksize[0])
else:
r_start = np.max((i * strides[0] - paddings[0], 0))
r_end = np.min((i * strides[0] + ksize[0] - paddings[0], L))
x_masked = x[:, :, r_start:r_end]
out[:, :, i] = np.max(x_masked, axis=(2))
return out
class TestPool1D_API(unittest.TestCase):
def setUp(self):
np.random.seed(123)
self.places = [fluid.CPUPlace()]
if core.is_compiled_with_cuda():
self.places.append(fluid.CUDAPlace(0))
def check_adaptive_max_dygraph_results(self, place):
with fluid.dygraph.guard(place):
input_np = np.random.random([2, 3, 32]).astype("float32")
input = fluid.dygraph.to_variable(input_np)
result = F.adaptive_max_pool1d(input, output_size=16)
result_np = max_pool1D_forward_naive(
input_np, ksize=[16], strides=[0], paddings=[0], adaptive=True)
self.assertTrue(np.allclose(result.numpy(), result_np))
ada_max_pool1d_dg = paddle.nn.layer.AdaptiveMaxPool1D(
output_size=16)
result = ada_max_pool1d_dg(input)
self.assertTrue(np.allclose(result.numpy(), result_np))
def check_adaptive_max_static_results(self, place):
with fluid.program_guard(fluid.Program(), fluid.Program()):
input = fluid.data(name="input", shape=[2, 3, 32], dtype="float32")
result = F.adaptive_max_pool1d(input, output_size=16)
input_np = np.random.random([2, 3, 32]).astype("float32")
result_np = max_pool1D_forward_naive(
input_np, ksize=[16], strides=[2], paddings=[0], adaptive=True)
exe = fluid.Executor(place)
fetches = exe.run(fluid.default_main_program(),
feed={"input": input_np},
fetch_list=[result])
self.assertTrue(np.allclose(fetches[0], result_np))
def test_adaptive_max_pool1d(self):
for place in self.places:
self.check_adaptive_max_dygraph_results(place)
self.check_adaptive_max_static_results(place)
class TestOutDtype(unittest.TestCase):
def test_max_pool(self):
api_fn = F.adaptive_max_pool1d
shape = [1, 3, 32]
check_out_dtype(
api_fn,
in_specs=[(shape, )],
expect_dtypes=['float32', 'float64'],
output_size=16)
if __name__ == '__main__':
unittest.main()