You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
Paddle/python/paddle/fluid/tests/unittests/test_affine_grid_op.py

119 lines
3.8 KiB

# Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import unittest
import numpy as np
from op_test import OpTest
import paddle
def AffineGrid(theta, size, align_corners):
n = size[0]
w = size[3]
h = size[2]
h_factor = w_factor = 1
if not align_corners:
h_factor = (h - 1) / float(h)
w_factor = (w - 1) / float(w)
h_idx = np.repeat(
np.linspace(-1, 1, h)[np.newaxis, :], w,
axis=0).T[:, :, np.newaxis] * h_factor
w_idx = np.repeat(
np.linspace(-1, 1, w)[np.newaxis, :], h,
axis=0)[:, :, np.newaxis] * w_factor
grid = np.concatenate(
[w_idx, h_idx, np.ones([h, w, 1])], axis=2) # h * w * 3
grid = np.repeat(grid[np.newaxis, :], size[0], axis=0) # n * h * w *3
ret = np.zeros([n, h * w, 2])
theta = theta.transpose([0, 2, 1])
for i in range(len(theta)):
ret[i] = np.dot(grid[i].reshape([h * w, 3]), theta[i])
# print ret.reshape([h * w, 2]).astype("float32")
return ret.reshape([n, h, w, 2]).astype("float32")
class TestAffineGridOp(OpTest):
def setUp(self):
self.initTestCase()
self.op_type = "affine_grid"
theta = np.random.randint(1, 3, self.theta_shape).astype("float32")
self.inputs = {'Theta': theta}
self.attrs = {
"use_cudnn": self.use_cudnn,
"align_corners": self.align_corners
}
if self.dynamic_shape:
self.inputs['OutputShape'] = self.output_shape
else:
self.attrs['output_shape'] = self.output_shape
self.outputs = {
'Output': AffineGrid(theta, self.output_shape, self.align_corners)
}
def test_check_output(self):
self.check_output()
def test_check_grad_normal(self):
self.check_grad(['Theta'], 'Output', no_grad_set=['OutputShape'])
def initTestCase(self):
self.theta_shape = (17, 2, 3)
self.output_shape = np.array([17, 2, 5, 7]).astype("int32")
self.dynamic_shape = False
self.use_cudnn = False
self.align_corners = True
class TestAffineGridOpCase1(TestAffineGridOp):
def initTestCase(self):
self.theta_shape = (20, 2, 3)
self.output_shape = np.array([20, 2, 5, 7]).astype("int32")
self.dynamic_shape = True
self.use_cudnn = True
self.align_corners = True
class TestAffineGridOpCase2(TestAffineGridOp):
def initTestCase(self):
self.theta_shape = (20, 2, 3)
self.output_shape = np.array([20, 2, 5, 7]).astype("int32")
self.dynamic_shape = True
self.use_cudnn = False
self.align_corners = True
class TestAffineGridOpCase3(TestAffineGridOp):
def initTestCase(self):
self.theta_shape = (20, 2, 3)
self.output_shape = np.array([20, 2, 5, 7]).astype("int32")
self.dynamic_shape = True
self.use_cudnn = False
self.align_corners = False
class TestAffineGridOpCase4(TestAffineGridOp):
def initTestCase(self):
self.theta_shape = (25, 2, 3)
self.output_shape = np.array([25, 2, 5, 6]).astype("int32")
self.dynamic_shape = False
self.use_cudnn = False
self.align_corners = False
if __name__ == '__main__':
paddle.enable_static()
unittest.main()