You can not select more than 25 topics
Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
93 lines
3.1 KiB
93 lines
3.1 KiB
# Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved.
|
|
#
|
|
# Licensed under the Apache License, Version 2.0 (the "License");
|
|
# you may not use this file except in compliance with the License.
|
|
# You may obtain a copy of the License at
|
|
#
|
|
# http://www.apache.org/licenses/LICENSE-2.0
|
|
#
|
|
# Unless required by applicable law or agreed to in writing, software
|
|
# distributed under the License is distributed on an "AS IS" BASIS,
|
|
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
# See the License for the specific language governing permissions and
|
|
# limitations under the License.
|
|
|
|
from __future__ import print_function
|
|
|
|
import paddle
|
|
import paddle.fluid as fluid
|
|
import paddle.fluid.layers as layers
|
|
import unittest
|
|
|
|
|
|
class TestAssertOp(unittest.TestCase):
|
|
def run_network(self, net_func):
|
|
main_program = fluid.Program()
|
|
startup_program = fluid.Program()
|
|
with fluid.program_guard(main_program, startup_program):
|
|
net_func()
|
|
exe = fluid.Executor()
|
|
exe.run(main_program)
|
|
|
|
def test_assert_true(self):
|
|
def net_func():
|
|
condition = layers.fill_constant(
|
|
shape=[1], dtype='bool', value=True)
|
|
layers.Assert(condition, [])
|
|
|
|
self.run_network(net_func)
|
|
|
|
def test_assert_false(self):
|
|
def net_func():
|
|
condition = layers.fill_constant(
|
|
shape=[1], dtype='bool', value=False)
|
|
layers.Assert(condition)
|
|
|
|
with self.assertRaises(ValueError):
|
|
self.run_network(net_func)
|
|
|
|
def test_assert_cond_numel_error(self):
|
|
def net_func():
|
|
condition = layers.fill_constant(
|
|
shape=[1, 2], dtype='bool', value=True)
|
|
layers.Assert(condition, [])
|
|
|
|
with self.assertRaises(ValueError):
|
|
self.run_network(net_func)
|
|
|
|
def test_assert_print_data(self):
|
|
def net_func():
|
|
zero = layers.fill_constant(shape=[1], dtype='int64', value=0)
|
|
one = layers.fill_constant(shape=[1], dtype='int64', value=1)
|
|
condition = layers.less_than(one, zero) # False
|
|
layers.Assert(condition, [zero, one])
|
|
|
|
print("test_assert_print_data")
|
|
with self.assertRaises(ValueError):
|
|
self.run_network(net_func)
|
|
|
|
def test_assert_summary(self):
|
|
def net_func():
|
|
x = layers.fill_constant(shape=[10], dtype='float32', value=2.0)
|
|
condition = layers.reduce_max(x) < 1.0
|
|
layers.Assert(condition, (x, ), 5)
|
|
|
|
print("test_assert_summary")
|
|
with self.assertRaises(ValueError):
|
|
self.run_network(net_func)
|
|
|
|
def test_assert_summary_greater_than_size(self):
|
|
def net_func():
|
|
x = layers.fill_constant(shape=[2, 3], dtype='float32', value=2.0)
|
|
condition = layers.reduce_max(x) < 1.0
|
|
layers.Assert(condition, [x], 10, name="test")
|
|
|
|
print("test_assert_summary_greater_than_size")
|
|
with self.assertRaises(ValueError):
|
|
self.run_network(net_func)
|
|
|
|
|
|
if __name__ == '__main__':
|
|
paddle.enable_static()
|
|
unittest.main()
|