You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
Paddle/python/paddle/fluid/tests/unittests/test_assign_value_op.py

113 lines
3.5 KiB

# Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
from __future__ import print_function
import unittest
import numpy
import op_test
import paddle.fluid as fluid
import paddle.fluid.framework as framework
import paddle.fluid.layers as layers
class TestAssignValueOp(op_test.OpTest):
def setUp(self):
self.op_type = "assign_value"
self.inputs = {}
self.attrs = {}
self.init_data()
self.attrs["shape"] = self.value.shape
self.attrs["dtype"] = framework.convert_np_dtype_to_dtype_(
self.value.dtype)
self.outputs = {"Out": self.value}
def init_data(self):
self.value = numpy.random.random(size=(2, 5)).astype(numpy.float32)
self.attrs["fp32_values"] = [float(v) for v in self.value.flat]
def test_forward(self):
self.check_output()
class TestAssignValueOp2(TestAssignValueOp):
def init_data(self):
self.value = numpy.random.random(size=(2, 5)).astype(numpy.int32)
self.attrs["int32_values"] = [int(v) for v in self.value.flat]
class TestAssignValueOp3(TestAssignValueOp):
def init_data(self):
self.value = numpy.random.random(size=(2, 5)).astype(numpy.int64)
self.attrs["int64_values"] = [int(v) for v in self.value.flat]
class TestAssignValueOp4(TestAssignValueOp):
def init_data(self):
self.value = numpy.random.choice(
a=[False, True], size=(2, 5)).astype(numpy.bool)
self.attrs["bool_values"] = [bool(v) for v in self.value.flat]
class TestAssignApi(unittest.TestCase):
def setUp(self):
self.init_dtype()
self.value = (
-100 + 200 * numpy.random.random(size=(2, 5))).astype(self.dtype)
self.place = fluid.CUDAPlace(0) if fluid.is_compiled_with_cuda(
) else fluid.CPUPlace()
def init_dtype(self):
self.dtype = "float32"
def test_assign(self):
main_program = fluid.Program()
with fluid.program_guard(main_program):
x = layers.create_tensor(dtype=self.dtype)
layers.assign(input=self.value, output=x)
exe = fluid.Executor(self.place)
[fetched_x] = exe.run(main_program, feed={}, fetch_list=[x])
self.assertTrue(
numpy.array_equal(fetched_x, self.value),
"fetch_x=%s val=%s" % (fetched_x, self.value))
self.assertEqual(fetched_x.dtype, self.value.dtype)
class TestAssignApi2(TestAssignApi):
def init_dtype(self):
self.dtype = "int32"
class TestAssignApi3(TestAssignApi):
def init_dtype(self):
self.dtype = "int64"
class TestAssignApi4(TestAssignApi):
def setUp(self):
self.init_dtype()
self.value = numpy.random.choice(
a=[False, True], size=(2, 5)).astype(numpy.bool)
self.place = fluid.CUDAPlace(0) if fluid.is_compiled_with_cuda(
) else fluid.CPUPlace()
def init_dtype(self):
self.dtype = "bool"
if __name__ == '__main__':
unittest.main()