You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
Paddle/python/paddle/fluid/tests/unittests/test_auc_op.py

130 lines
4.1 KiB

# Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
from __future__ import print_function
import unittest
import numpy as np
from op_test import OpTest
from paddle.fluid import metrics
import paddle.fluid as fluid
class TestAucOp(OpTest):
def setUp(self):
self.op_type = "auc"
pred = np.random.random((128, 2)).astype("float32")
labels = np.random.randint(0, 2, (128, 1)).astype("int64")
num_thresholds = 200
slide_steps = 1
stat_pos = np.zeros((1 + slide_steps) * (num_thresholds + 1) + 1,
).astype("int64")
stat_neg = np.zeros((1 + slide_steps) * (num_thresholds + 1) + 1,
).astype("int64")
self.inputs = {
'Predict': pred,
'Label': labels,
"StatPos": stat_pos,
"StatNeg": stat_neg
}
self.attrs = {
'curve': 'ROC',
'num_thresholds': num_thresholds,
"slide_steps": slide_steps
}
python_auc = metrics.Auc(name="auc",
curve='ROC',
num_thresholds=num_thresholds)
python_auc.update(pred, labels)
pos = python_auc._stat_pos * 2
pos.append(1)
neg = python_auc._stat_neg * 2
neg.append(1)
self.outputs = {
'AUC': np.array(python_auc.eval()),
'StatPosOut': np.array(pos),
'StatNegOut': np.array(neg)
}
def test_check_output(self):
self.check_output()
class TestGlobalAucOp(OpTest):
def setUp(self):
self.op_type = "auc"
pred = np.random.random((128, 2)).astype("float32")
labels = np.random.randint(0, 2, (128, 1)).astype("int64")
num_thresholds = 200
slide_steps = 0
stat_pos = np.zeros((1, (num_thresholds + 1))).astype("int64")
stat_neg = np.zeros((1, (num_thresholds + 1))).astype("int64")
self.inputs = {
'Predict': pred,
'Label': labels,
"StatPos": stat_pos,
"StatNeg": stat_neg
}
self.attrs = {
'curve': 'ROC',
'num_thresholds': num_thresholds,
"slide_steps": slide_steps
}
python_auc = metrics.Auc(name="auc",
curve='ROC',
num_thresholds=num_thresholds)
python_auc.update(pred, labels)
pos = python_auc._stat_pos
neg = python_auc._stat_neg
self.outputs = {
'AUC': np.array(python_auc.eval()),
'StatPosOut': np.array(pos),
'StatNegOut': np.array(neg)
}
def test_check_output(self):
self.check_output()
class TestAucOpError(unittest.TestCase):
def test_errors(self):
with fluid.program_guard(fluid.Program(), fluid.Program()):
def test_type1():
data1 = fluid.data(name="input1", shape=[-1, 2], dtype="int")
label1 = fluid.data(name="label1", shape=[-1], dtype="int")
result1 = fluid.layers.auc(input=data1, label=label1)
self.assertRaises(TypeError, test_type1)
def test_type2():
data2 = fluid.data(
name="input2", shape=[-1, 2], dtype="float32")
label2 = fluid.data(name="label2", shape=[-1], dtype="float32")
result2 = fluid.layers.auc(input=data2, label=label2)
self.assertRaises(TypeError, test_type2)
if __name__ == '__main__':
unittest.main()