You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
Paddle/python/paddle/fluid/tests/unittests/test_auto_checkpoint.py

280 lines
8.9 KiB

# Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import unittest
import paddle
import paddle.fluid as fluid
import paddle.fluid.incubate.fleet.base.role_maker as role_maker
from paddle.fluid.incubate.fleet.collective import CollectiveOptimizer, fleet
import os
import sys
from paddle.distributed.fleet.utils.fs import LocalFS, HDFSClient
import paddle.fluid.incubate.checkpoint.auto_checkpoint as acp
from paddle.fluid.incubate.checkpoint.checkpoint_saver import PaddleModel
from paddle.fluid.framework import program_guard
from paddle.fluid import unique_name
import numpy as np
from paddle.io import Dataset, BatchSampler, DataLoader
from paddle.fluid.tests.unittests.auto_checkpoint_utils import AutoCheckpointBase, get_logger
paddle.enable_static()
logger = get_logger()
class AutoCheckPointACLBase(AutoCheckpointBase):
def setUp(self):
get_logger()
logger.info("enter tests")
self._old_environ = dict(os.environ)
proc_env = {
"PADDLE_RUNNING_ENV": "PADDLE_EDL_AUTO_CHECKPOINT",
"PADDLE_TRAINER_ID": "0",
"PADDLE_RUNNING_PLATFORM": "PADDLE_CLOUD",
"PADDLE_JOB_ID": "test_job_auto",
"PADDLE_EDL_HDFS_HOME": "/usr/local/hadoop-2.7.7",
"PADDLE_EDL_HDFS_NAME": "",
"PADDLE_EDL_HDFS_UGI": "",
"PADDLE_EDL_HDFS_CHECKPOINT_PATH": "auto_checkpoint",
"PADDLE_EDL_ONLY_FOR_CE_TEST": "1",
"PADDLE_EDL_FS_CACHE": ".auto_checkpoint_test",
"PADDLE_EDL_SAVE_CHECKPOINT_INTER": "0"
}
os.environ.update(proc_env)
def tearDown(self):
os.environ.clear()
os.environ.update(self._old_environ)
file_name = os.path.basename(__file__)
base_name = os.path.splitext(file_name)[0]
print("runnng name:", base_name)
def _run_normal(self):
exe, main_prog, startup_prog = self._generate()
save_dir = "./run_save_model"
fs = LocalFS()
fs.delete(save_dir)
logger.info("begin _run_normal")
compiled, data_loader, optimizer, loss, image, label = self._init_env(
exe, main_prog, startup_prog)
for i in range(3):
self.assertEqual(acp._get_train_epoch_range(), None)
self.assertEqual(acp.g_acp_type, None)
for data in data_loader():
self.assertEqual(acp.g_acp_type, None)
self.assertEqual(acp._get_train_epoch_range(), None)
fetch = exe.run(compiled, feed=data, fetch_list=[loss])
self.assertEqual(acp.g_acp_type, None)
self.assertEqual(acp._get_train_epoch_range(), None)
m1 = PaddleModel(exe, compiled)
m1.serialize(save_dir)
m2 = PaddleModel(exe, compiled)
m2.deserialize(save_dir)
logger.info("end _run_normal")
fs.delete(save_dir)
def _not_use_train(self):
logger.info("begin _not_use_train")
exe, main_prog, startup_prog = self._generate()
compiled, data_loader, optimizer, loss, image, label = \
self._init_env(exe, main_prog, startup_prog)
epochs = []
for i in acp.train_epoch_range(3, 0):
epochs.append(i)
for data in data_loader():
fetch = exe.run(compiled, feed=data, fetch_list=[loss])
self.assertEqual(epochs, [0, 1, 2])
logger.info("end _not_use_train")
def _run_save_0(self, break_epoch_no=None):
logger.info("begin _run_save_0")
fs = LocalFS()
save_dir = "./run_save_0"
fs.delete(save_dir)
exe, main_prog, startup_prog = self._generate()
compiled, data_loader, optimizer, loss, image, label = \
self._init_env(exe, main_prog, startup_prog)
o = None
i = 0
name = None
for i in acp.train_epoch_range(3, 0):
o = acp._get_train_epoch_range()
name = o.name
for data in data_loader():
fetch = exe.run(compiled, feed=data, fetch_list=[loss])
self.assertEqual(len(o._exe_status), 1)
if break_epoch_no is not None:
if i == break_epoch_no:
break
o = acp._get_train_epoch_range()
assert o == None, "now train epoch must not exits now"
if break_epoch_no is None:
self.assertEqual(i, 2)
else:
self.assertEqual(i, break_epoch_no)
fs.delete(save_dir)
logger.info("end _run_save_0")
def _run_load_0(self, break_epoch_no=None):
logger.info("begin _run_load_0")
exe, main_prog, startup_prog = self._generate()
fs = LocalFS()
save_dir = "./run_load_0"
fs.delete(save_dir)
compiled, data_loader, optimizer, loss, image, label = self._init_env(
exe, main_prog, startup_prog)
o = None
i = 0
check = False
epochs = []
for i in acp.train_epoch_range(3, 0):
epochs.append(i)
for data in data_loader():
fetch = exe.run(compiled, feed=data, fetch_list=[loss])
o = acp._get_train_epoch_range()
self.assertTrue(o == None, "now train epoch must not exits now")
self.assertEqual(i, 2)
if break_epoch_no is not None:
if break_epoch_no == 0:
self.assertEqual(epochs, [0, 1, 2])
elif break_epoch_no == 1:
self.assertEqual(epochs, [1, 2])
elif break_epoch_no == 2:
self.assertEqual(epochs, [2])
else:
self.assertEqual(epochs, [2])
fs.delete(save_dir)
logger.info("begin _run_load_0")
def _test_corner_epoch_no(self, break_epoch_no):
logger.info("begin test_corener_epoch_no")
checker = acp._get_checker()
fs = HDFSClient(checker.hdfs_home, None)
fs.delete(checker.hdfs_checkpoint_path)
self._reset_generator()
self._run_save_0(break_epoch_no=break_epoch_no)
self._reset_generator()
self._run_load_0(break_epoch_no=break_epoch_no)
fs.delete(checker.hdfs_checkpoint_path)
logger.info("end test_corener_epoch_no")
class AutoCheckpointTest(AutoCheckPointACLBase):
def setUp(self):
get_logger()
logger.info("enter tests")
self._old_environ = dict(os.environ)
proc_env = {
"PADDLE_RUNNING_ENV": "PADDLE_EDL_AUTO_CHECKPOINT",
"PADDLE_TRAINER_ID": "0",
"PADDLE_RUNNING_PLATFORM": "PADDLE_CLOUD",
"PADDLE_JOB_ID": "test_job_auto_0",
"PADDLE_EDL_HDFS_HOME": "/usr/local/hadoop-2.7.7",
"PADDLE_EDL_HDFS_NAME": "",
"PADDLE_EDL_HDFS_UGI": "",
"PADDLE_EDL_HDFS_CHECKPOINT_PATH": "auto_checkpoint_0",
"PADDLE_EDL_ONLY_FOR_CE_TEST": "1",
"PADDLE_EDL_FS_CACHE": ".auto_checkpoint_test_0",
"PADDLE_EDL_SAVE_CHECKPOINT_INTER": "0"
}
os.environ.update(proc_env)
def test_normal(self):
logger.info("begin test_normal")
checker = acp._get_checker()
fs = HDFSClient(checker.hdfs_home, None)
fs.delete(checker.hdfs_checkpoint_path)
self._clear_envs()
self._reset_generator()
self._run_normal()
self._readd_envs()
logger.info("end test_normal")
def test_basic(self):
logger.info("begin test_basic")
checker = acp._get_checker()
self.assertEqual(checker.run_env, "PADDLE_EDL_AUTO_CHECKPOINT")
self.assertEqual(checker.platform, "PADDLE_CLOUD")
self.assertEqual(checker.save_checkpoint_inter, 0)
print(checker)
fs = HDFSClient(checker.hdfs_home, None)
fs.delete(checker.hdfs_checkpoint_path)
self._reset_generator()
self._run_save_0()
self._reset_generator()
self._run_load_0()
logger.info("end test_basic")
def test_not_use(self):
logger.info("begin test_not_use")
self._clear_envs()
self._reset_generator()
self._not_use_train()
self._readd_envs()
logger.info("end test_not_use")
def test_checker(self):
os.environ.pop("PADDLE_JOB_ID", None)
try:
checker = AutoCheckpointChecker()
self.assertFalse(True)
except Exception as e:
pass
os.environ["PADDLE_JOB_ID"] = "test_job_auto_1"
if __name__ == '__main__':
unittest.main()