You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
Paddle/python/paddle/fluid/tests/unittests/test_auto_checkpoint_multip...

105 lines
3.7 KiB

# Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import unittest
import paddle
import paddle.fluid as fluid
import paddle.fluid.incubate.fleet.base.role_maker as role_maker
from paddle.fluid.incubate.fleet.collective import CollectiveOptimizer, fleet
import os
import sys
from paddle.distributed.fleet.utils.fs import LocalFS, HDFSClient
import paddle.fluid.incubate.checkpoint.auto_checkpoint as acp
from paddle.fluid.incubate.checkpoint.checkpoint_saver import PaddleModel
from paddle.fluid.framework import program_guard
from paddle.fluid import unique_name
import numpy as np
from paddle.io import Dataset, BatchSampler, DataLoader
from paddle.fluid.tests.unittests.auto_checkpoint_utils import AutoCheckpointBase, get_logger
from paddle.fluid.tests.unittests.test_auto_checkpoint import AutoCheckPointACLBase
paddle.enable_static()
logger = get_logger()
class AutoCheckpointTestMul(AutoCheckPointACLBase):
def setUp(self):
get_logger()
logger.info("enter tests")
self._old_environ = dict(os.environ)
proc_env = {
"PADDLE_RUNNING_ENV": "PADDLE_EDL_AUTO_CHECKPOINT",
"PADDLE_TRAINER_ID": "0",
"PADDLE_RUNNING_PLATFORM": "PADDLE_CLOUD",
"PADDLE_JOB_ID": "test_job_auto_dist_multiple",
"PADDLE_EDL_HDFS_HOME": "/usr/local/hadoop-2.7.7",
"PADDLE_EDL_HDFS_NAME": "",
"PADDLE_EDL_HDFS_UGI": "",
"PADDLE_EDL_HDFS_CHECKPOINT_PATH": "auto_checkpoint_dist_multiple",
"PADDLE_EDL_ONLY_FOR_CE_TEST": "1",
"PADDLE_EDL_FS_CACHE": ".auto_checkpoint_test_dist_multiple",
"PADDLE_EDL_SAVE_CHECKPOINT_INTER": "0"
}
os.environ.update(proc_env)
def test_multiple(self):
checker = acp._get_checker()
fs = HDFSClient(checker.hdfs_home, None)
fs.delete(checker.hdfs_checkpoint_path)
self._reset_generator()
logger.info("begin test_multiple")
fs = LocalFS()
save_dir = "./run_save_0"
fs.delete(save_dir)
exe, main_prog1, startup_prog1 = self._generate()
_, main_prog2, startup_prog2 = self._generate()
compiled1, data_loader1, optimizer1, loss1, image1, label1 = \
self._init_env(exe, main_prog1, startup_prog1)
compiled2, data_loader2, optimizer2, loss2, image2, label2 = \
self._init_env(exe, main_prog2, startup_prog2)
o = None
epochs = []
for i in acp.train_epoch_range(3, 0):
for data in data_loader1():
fetch = exe.run(compiled1, feed=data, fetch_list=[loss1])
for data in data_loader2():
fetch = exe.run(compiled2, feed=data, fetch_list=[loss2])
o = acp._get_train_epoch_range()
self.assertEqual(len(o._exe_status), 2)
print(o._exe_status)
epochs.append(i)
o = acp._get_train_epoch_range()
self.assertTrue(o == None, "now train epoch must not exits now")
self.assertEqual(i, 2)
self.assertEqual(epochs, [0, 1, 2])
fs.delete(save_dir)
logger.info("end test_multiple")
if __name__ == '__main__':
unittest.main()