You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
Paddle/python/paddle/fluid/tests/unittests/test_base_layer.py

336 lines
11 KiB

# Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import unittest
import numpy as np
import paddle
import paddle.fluid as fluid
from paddle.fluid.dygraph import to_variable
from paddle.fluid.framework import ParamBase
from paddle.jit import ProgramTranslator
class L1(fluid.Layer):
def __init__(self):
super(L1, self).__init__()
self._param_attr = fluid.ParamAttr(
initializer=fluid.initializer.Constant(value=0.1))
self.w1 = self.create_parameter(
attr=self._param_attr, shape=[2, 2], dtype='float32', is_bias=False)
self.w2 = self.create_parameter(
attr=self._param_attr, shape=[2, 2], dtype='float32', is_bias=False)
def forward(self):
return self.w1 + self.w2
class L2(fluid.Layer):
def __init__(self):
super(L2, self).__init__()
self.layer1 = L1()
self.layer2 = L1()
def forward(self):
return self.layer1() + self.layer2()
class L3(fluid.Layer):
def __init__(self):
super(L3, self).__init__()
self.layer1 = L2()
self.layer2 = L2()
def forward(self):
return self.layer1() + self.layer2()
class TestBaseLayer(unittest.TestCase):
def test_one_level(self):
with fluid.dygraph.guard():
l = L1()
ret = l()
expected_names = ['l1.w1', 'l1.w2']
idx = 0
for name, _ in l.named_parameters(prefix='l1'):
self.assertEqual(name, expected_names[idx])
idx += 1
self.assertTrue(np.allclose(ret.numpy(), 0.2 * np.ones([2, 2])))
def test_three_level(self):
with fluid.dygraph.guard():
l = L3()
expected_names = [
'l3.layer1.layer1.w1',
'l3.layer1.layer1.w2',
'l3.layer1.layer2.w1',
'l3.layer1.layer2.w2',
'l3.layer2.layer1.w1',
'l3.layer2.layer1.w2',
'l3.layer2.layer2.w1',
'l3.layer2.layer2.w2',
]
idx = 0
for name, _ in l.named_parameters(prefix='l3'):
self.assertEqual(name, expected_names[idx])
idx += 1
ret = l()
self.assertTrue(np.allclose(ret.numpy(), 0.8 * np.ones([2, 2])))
def test_add_parameter_with_error(self):
with fluid.dygraph.guard():
net = fluid.Layer()
param = net.create_parameter(shape=[1])
with self.assertRaises(TypeError):
net.add_parameter(10, param)
with self.assertRaises(KeyError):
net.add_parameter("param.name", param)
with self.assertRaises(KeyError):
net.add_parameter("", param)
with self.assertRaises(KeyError):
net.test_param = 10
net.add_parameter("test_param", param)
with self.assertRaises(TypeError):
net.add_parameter("no_param", 10)
load_param = net.create_parameter(shape=[1])
net._loaddict_holder[load_param.name] = load_param
net.add_parameter("load_param", load_param)
class BufferLayer(fluid.Layer):
def __init__(self):
super(BufferLayer, self).__init__()
buffer_var = to_variable(np.zeros([2, 4]).astype('int32'))
self.register_buffer("layer_buffer", buffer_var)
def forward(self):
pass
class BufferNet(fluid.Layer):
def __init__(self):
super(BufferNet, self).__init__()
self.buffer_layer = BufferLayer()
self.w1 = self.create_parameter(
shape=[2, 2], dtype='float32', is_bias=False)
buffer_var = to_variable(np.ones([2, 4]).astype('int32'))
self.register_buffer("net_buffer", buffer_var)
self.new_buffer = to_variable(np.ones([4, 2]).astype('int32'))
def forward(self):
pass
class TestBuffer(unittest.TestCase):
def test_buffers_and_named_buffers(self):
def names(named_buffers):
return [name for name, _ in named_buffers]
with fluid.dygraph.guard():
layer = BufferLayer()
net = BufferNet()
self.assertEqual(len(layer.buffers()), 1)
self.assertEqual(names(layer.named_buffers()), ['layer_buffer'])
self.assertEqual(len(net.buffers()), 3)
self.assertEqual(
names(net.named_buffers()),
['net_buffer', 'new_buffer', 'buffer_layer.layer_buffer'])
self.assertEqual(len(net.buffers(include_sublayers=False)), 2)
self.assertEqual(
names(net.named_buffers(include_sublayers=False)),
['net_buffer', 'new_buffer'])
def test_register_buffer_with_error(self):
with fluid.dygraph.guard():
net = fluid.Layer()
var = to_variable(np.zeros([1]))
with self.assertRaisesRegexp(TypeError,
"name of buffer should be a string"):
net.register_buffer(12, var)
with self.assertRaisesRegexp(TypeError,
"buffer should be a core.VarBase"):
net.register_buffer("buffer_name", ParamBase([2, 2], 'float32'))
with self.assertRaisesRegexp(KeyError,
"name of buffer can not contain"):
net.register_buffer("buffer.name", var)
with self.assertRaisesRegexp(KeyError,
"name of buffer can not be empty"):
net.register_buffer("", var)
net.attr_name = 10
with self.assertRaisesRegexp(KeyError, "already exists"):
net.register_buffer("attr_name", var)
del net.attr_name
net.attr_name = ParamBase([2, 2], 'float32')
with self.assertRaisesRegexp(KeyError, "already exists"):
net.register_buffer("attr_name", var)
def test_register_buffer_same_name(self):
with fluid.dygraph.guard():
net = fluid.Layer()
var1 = to_variable(np.zeros([1]))
var2 = to_variable(np.zeros([2]))
var3 = to_variable(np.zeros([3]))
net.register_buffer("buffer_name", var1)
self.assert_var_base_equal(net.buffer_name, var1)
net.register_buffer("buffer_name", var2)
self.assert_var_base_equal(net.buffer_name, var2)
net.register_buffer("buffer_name", var3)
self.assert_var_base_equal(net.buffer_name, var3)
def test_buffer_not_persistable(self):
with fluid.dygraph.guard():
net = fluid.Layer()
var1 = to_variable(np.zeros([1]))
net.register_buffer("buffer_name", var1, persistable=False)
self.assertEqual(len(net.buffers()), 1)
self.assertEqual(len(net.state_dict()), 0)
def test_buffer_not_persistable_del(self):
with fluid.dygraph.guard():
net = fluid.Layer()
var1 = to_variable(np.zeros([1]))
net.register_buffer("buffer_name", var1, persistable=False)
del net.buffer_name
self.assertEqual(len(net.buffers()), 0)
def test_buffer_not_persistable_overwrite(self):
with fluid.dygraph.guard():
net = fluid.Layer()
var1 = to_variable(np.zeros([1]))
var2 = to_variable(np.zeros([2]))
net.register_buffer("buffer_name", var1, persistable=False)
net.register_buffer("buffer_name", var2)
# Allow to overwrite a non-persistable buffer with a persistable var.
self.assertEqual(len(net.buffers()), 1)
self.assertEqual(len(net.state_dict()), 1)
net.register_buffer("buffer_name", var1, persistable=False)
self.assertEqual(len(net.buffers()), 1)
self.assertEqual(len(net.state_dict()), 0)
def test_buffer_not_persistable_assign(self):
with fluid.dygraph.guard():
net = fluid.Layer()
var1 = to_variable(np.zeros([1]))
net.register_buffer("buffer_name", var1, persistable=False)
# Assigning Nones will remove the buffer, but allow to re-assign
# to remark it as buffer.
net.buffer_name = None
self.assertEqual(len(net.buffers()), 0)
self.assertEqual(len(net.state_dict()), 0)
net.buffer_name = var1
self.assertEqual(len(net.buffers()), 1)
self.assertEqual(len(net.state_dict()), 0)
# Re-assign a ParamBase will remove the buffer.
net.buffer_name = ParamBase([2, 2], 'float32')
self.assertEqual(len(net.buffers()), 0)
self.assertEqual(len(net.state_dict()), 1)
def test_buffer_not_persistable_load(self):
with fluid.dygraph.guard():
net = fluid.Layer()
var1 = to_variable(np.zeros([1]))
net.register_buffer("buffer_name", var1, persistable=False)
net.load_dict({})
def test_buffer_state_dict(self):
with fluid.dygraph.guard():
net = fluid.Layer()
var1 = to_variable(np.zeros([2, 3]))
var2 = to_variable(np.zeros([3, 2]))
net.register_buffer("buffer_var1", var1)
net.register_buffer("buffer_var2", var2, persistable=False)
self.assertEqual(len(net.state_dict()), 1)
self.assertEqual([name for name, _ in net.state_dict().items()],
["buffer_var1"])
# load state_dict
net_load = fluid.Layer()
var = to_variable(np.ones([2, 3]))
net_load.register_buffer("buffer_var1", var)
net_load.load_dict(net.state_dict())
self.assert_var_base_equal(net_load.buffer_var1, var1)
def assert_var_base_equal(self, var1, var2):
self.assertTrue(np.array_equal(var1.numpy(), var2.numpy()))
class BufferNetWithModification(paddle.nn.Layer):
def __init__(self, shape):
super(BufferNetWithModification, self).__init__()
self.buffer1 = paddle.zeros(shape, 'int32')
self.buffer2 = paddle.zeros(shape, 'int32')
@paddle.jit.to_static
def forward(self, x):
self.buffer1 += x
self.buffer2 = self.buffer1 + x
out = self.buffer1 + self.buffer2
return out
class TestModifiedBuffer(unittest.TestCase):
def setUp(self):
paddle.disable_static()
self.prog_trans = ProgramTranslator()
self.shape = [10, 16]
def _run(self, to_static=False):
self.prog_trans.enable(to_static)
x = paddle.ones([1], 'int32')
net = BufferNetWithModification(self.shape)
out = net(x)
return out, net.buffer1, net.buffer2
def test_modified(self):
dy_outs = self._run(False)
st_outs = self._run(True)
for i in range(len(dy_outs)):
self.assertTrue(
np.array_equal(dy_outs[i].numpy(), st_outs[i].numpy()))
if __name__ == '__main__':
unittest.main()