You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
Paddle/python/paddle/fluid/tests/unittests/test_bilinear_api.py

66 lines
2.3 KiB

# Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
from __future__ import print_function
import unittest
from op_test import OpTest
import paddle
import paddle.fluid as fluid
import paddle.fluid.core as core
import numpy as np
class TestBilinearAPI(unittest.TestCase):
def test_api(self):
with fluid.program_guard(fluid.default_startup_program(),
fluid.default_main_program()):
if core.is_compiled_with_cuda():
place = core.CUDAPlace(0)
else:
place = core.CPUPlace()
exe = fluid.Executor(place)
data1 = fluid.data(name='X1', shape=[5, 5], dtype='float32')
data2 = fluid.data(name='X2', shape=[5, 4], dtype='float32')
layer1 = np.random.random((5, 5)).astype('float32')
layer2 = np.random.random((5, 4)).astype('float32')
bilinear = paddle.nn.Bilinear(
in1_features=5, in2_features=4, out_features=1000)
ret = bilinear(data1, data2)
exe.run(fluid.default_startup_program())
ret_fetch = exe.run(feed={'X1': layer1,
'X2': layer2},
fetch_list=[ret.name])
self.assertEqual(ret_fetch[0].shape, (5, 1000))
class TestBilinearAPIDygraph(unittest.TestCase):
def test_api(self):
paddle.disable_static()
layer1 = np.random.random((5, 5)).astype('float32')
layer2 = np.random.random((5, 4)).astype('float32')
bilinear = paddle.nn.Bilinear(
in1_features=5, in2_features=4, out_features=1000)
ret = bilinear(paddle.to_tensor(layer1), paddle.to_tensor(layer2))
self.assertEqual(ret.shape, [5, 1000])
if __name__ == "__main__":
unittest.main()