You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
Paddle/python/paddle/fluid/tests/unittests/test_calc_gradient.py

103 lines
3.5 KiB

# Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
from __future__ import print_function
import unittest
import numpy as np
import paddle.fluid as fluid
import paddle.fluid.layers as layers
from paddle.fluid.backward import calc_gradient
class TestCalcGradient(unittest.TestCase):
def test_calc_gradient(self):
main = fluid.Program()
startup = fluid.Program()
with fluid.program_guard(main, startup):
x = layers.create_parameter(dtype="float32", shape=[5, 10])
y = layers.create_parameter(dtype="float32", shape=[10, 8])
mul_out = layers.mul(x=x, y=y)
mean_out = layers.mean(mul_out)
a = calc_gradient(mean_out, mul_out)
b = calc_gradient(mean_out, x)
place = fluid.CPUPlace()
exe = fluid.Executor(place)
exe.run(startup)
exe.run(main, feed={}, fetch_list=[a, b])
class TestDoubleGrad(unittest.TestCase):
def test1(self):
main = fluid.Program()
startup = fluid.Program()
with fluid.program_guard(main, startup):
net = lambda x: x * x
x = fluid.layers.create_parameter(
name='x',
shape=[1],
dtype='float32',
default_initializer=fluid.initializer.Constant(3))
grad1, = fluid.gradients(net(x), x) # 2x = 6
z = net(x - grad1)
grad2, = fluid.gradients(z, x) # gradients( (x - 2x)^2) = 2x = 6
place = fluid.CPUPlace()
exe = fluid.Executor(place)
exe.run(startup)
out = exe.run(main, fetch_list=[grad1.name, grad2.name])
self.assertEqual(6, out[0][0])
self.assertEqual(6, out[1][0])
def test2(self):
main = fluid.Program()
startup = fluid.Program()
with fluid.program_guard(main, startup):
x = fluid.layers.create_parameter(
name='x',
shape=[1],
dtype='float32',
default_initializer=fluid.initializer.Constant(1))
y = x * x
dx1, = fluid.gradients(y, x)
z = dx1 * dx1 + y * y
dx2, = fluid.gradients(z, x)
place = fluid.CPUPlace()
exe = fluid.Executor(place)
exe.run(startup)
out, = exe.run(main, fetch_list=[dx2])
self.assertEqual(12, out[0])
class TestGradientWithPrune(unittest.TestCase):
def test_prune(self):
x = fluid.data(name='x', shape=[3], dtype='float32')
x.stop_gradient = False
x1, x2, x3 = fluid.layers.split(x, dim=0, num_or_sections=3)
y = x1 * 2
x1_grad = fluid.gradients(y, x)
exe = fluid.Executor(fluid.CPUPlace())
main = fluid.default_main_program()
exe.run(fluid.default_startup_program())
out = exe.run(main,
feed={'x': np.ones([3]).astype('float32')},
fetch_list=[x1_grad])
self.assertTrue(np.array_equal(out[0], [2., 0., 0.]))
if __name__ == "__main__":
unittest.main()