You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
Paddle/python/paddle/fluid/tests/unittests/test_case.py

276 lines
11 KiB

# Copyright (c) 2019 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
from __future__ import print_function
import numpy as np
import unittest
import paddle.fluid as fluid
import paddle.fluid.core as core
import paddle.fluid.layers as layers
from paddle.fluid.framework import Program, program_guard
from functools import partial
import paddle.fluid.optimizer as optimizer
class TestAPICase(unittest.TestCase):
def test_return_single_var(self):
def fn_1():
return layers.fill_constant(shape=[4, 2], dtype='int32', value=1)
def fn_2():
return layers.fill_constant(shape=[4, 2], dtype='int32', value=2)
def fn_3():
return layers.fill_constant(shape=[4, 3], dtype='int32', value=3)
main_program = Program()
startup_program = Program()
with program_guard(main_program, startup_program):
x = layers.fill_constant(shape=[1], dtype='float32', value=0.3)
y = layers.fill_constant(shape=[1], dtype='float32', value=0.1)
z = layers.fill_constant(shape=[1], dtype='float32', value=0.2)
pred_2 = layers.less_than(x, y) # false: 0.3 < 0.1
pred_1 = layers.less_than(z, x) # true: 0.2 < 0.3
# call fn_1
out_0 = layers.case(
pred_fn_pairs=[(pred_1, fn_1), (pred_1, fn_2)], default=fn_3)
# call fn_2
out_1 = layers.case(
pred_fn_pairs=[(pred_2, fn_1), (pred_1, fn_2)], default=fn_3)
# call default fn_3
out_2 = layers.case(
pred_fn_pairs=((pred_2, fn_1), (pred_2, fn_2)), default=fn_3)
# no default, call fn_2
out_3 = layers.case(pred_fn_pairs=[(pred_1, fn_2)])
# no default, call fn_2. but pred_2 is false
out_4 = layers.case(pred_fn_pairs=[(pred_2, fn_2)])
place = fluid.CUDAPlace(0) if core.is_compiled_with_cuda(
) else fluid.CPUPlace()
exe = fluid.Executor(place)
res = exe.run(main_program,
fetch_list=[out_0, out_1, out_2, out_3, out_4])
self.assertTrue(np.allclose(res[0], 1))
self.assertTrue(np.allclose(res[1], 2))
self.assertTrue(np.allclose(res[2], 3))
self.assertTrue(np.allclose(res[3], 2))
self.assertTrue(np.allclose(res[4], 2))
def test_return_var_tuple(self):
def fn_1():
return layers.fill_constant(
shape=[1, 2], dtype='int32', value=1), layers.fill_constant(
shape=[2, 3], dtype='float32', value=2)
def fn_2():
return layers.fill_constant(
shape=[3, 4], dtype='int32', value=3), layers.fill_constant(
shape=[4, 5], dtype='float32', value=4)
def fn_3():
return layers.fill_constant(
shape=[5], dtype='int32', value=5), layers.fill_constant(
shape=[5, 6], dtype='float32', value=6)
main_program = Program()
startup_program = Program()
with program_guard(main_program, startup_program):
x = layers.fill_constant(shape=[1], dtype='float32', value=1)
y = layers.fill_constant(shape=[1], dtype='float32', value=1)
z = layers.fill_constant(shape=[1], dtype='float32', value=3)
pred_1 = layers.equal(x, y) # true
pred_2 = layers.equal(x, z) # false
out = layers.case(((pred_1, fn_1), (pred_2, fn_2)), fn_3)
place = fluid.CUDAPlace(0) if core.is_compiled_with_cuda(
) else fluid.CPUPlace()
exe = fluid.Executor(place)
ret = exe.run(main_program, fetch_list=out)
self.assertTrue(
np.allclose(np.asarray(ret[0]), np.full((1, 2), 1, np.int32)))
self.assertTrue(
np.allclose(
np.asarray(ret[1]), np.full((2, 3), 2, np.float32)))
class TestAPICase_Nested(unittest.TestCase):
def test_nested_case(self):
def fn_1(x=1):
var_5 = layers.fill_constant(shape=[1], dtype='int32', value=5)
var_6 = layers.fill_constant(shape=[1], dtype='int32', value=6)
out = layers.case(pred_fn_pairs=[(var_5 < var_6, partial(
layers.fill_constant, shape=[1], dtype='int32', value=x)),
(var_5 == var_6, partial(
layers.fill_constant,
shape=[2],
dtype='int32',
value=x))])
return out
def fn_2(x=2):
var_5 = layers.fill_constant(shape=[1], dtype='int32', value=5)
var_6 = layers.fill_constant(shape=[1], dtype='int32', value=6)
out = layers.case(pred_fn_pairs=[(var_5 < var_6, partial(
fn_1, x=x)), (var_5 == var_6, partial(
layers.fill_constant, shape=[2], dtype='int32', value=x))])
return out
def fn_3():
var_5 = layers.fill_constant(shape=[1], dtype='int32', value=5)
var_6 = layers.fill_constant(shape=[1], dtype='int32', value=6)
out = layers.case(pred_fn_pairs=[(var_5 < var_6, partial(
fn_2, x=3)), (var_5 == var_6, partial(
layers.fill_constant, shape=[2], dtype='int32', value=7))])
return out
main_program = Program()
startup_program = Program()
with program_guard(main_program, startup_program):
x = layers.fill_constant(shape=[1], dtype='float32', value=0.3)
y = layers.fill_constant(shape=[1], dtype='float32', value=0.1)
z = layers.fill_constant(shape=[1], dtype='float32', value=0.2)
pred_2 = layers.less_than(x, y) # false: 0.3 < 0.1
pred_1 = layers.less_than(z, x) # true: 0.2 < 0.3
out_1 = layers.case(
pred_fn_pairs=[(pred_1, fn_1), (pred_2, fn_2)], default=fn_3)
out_2 = layers.case(
pred_fn_pairs=[(pred_2, fn_1), (pred_1, fn_2)], default=fn_3)
out_3 = layers.case(
pred_fn_pairs=[(x == y, fn_1), (x == z, fn_2)], default=fn_3)
place = fluid.CUDAPlace(0) if core.is_compiled_with_cuda(
) else fluid.CPUPlace()
exe = fluid.Executor(place)
res = exe.run(main_program, fetch_list=[out_1, out_2, out_3])
self.assertTrue(np.allclose(res[0], 1))
self.assertTrue(np.allclose(res[1], 2))
self.assertTrue(np.allclose(res[2], 3))
class TestAPICase_Error(unittest.TestCase):
def test_error(self):
def fn_1():
return layers.fill_constant(shape=[4, 2], dtype='int32', value=1)
main_program = Program()
startup_program = Program()
with program_guard(main_program, startup_program):
x = layers.fill_constant(shape=[1], dtype='float32', value=0.23)
z = layers.fill_constant(shape=[1], dtype='float32', value=0.2)
pred_1 = layers.less_than(z, x) # true
# The type of 'pred_fn_pairs' in case must be list or tuple
def type_error_pred_fn_pairs():
layers.case(pred_fn_pairs=1, default=fn_1)
self.assertRaises(TypeError, type_error_pred_fn_pairs)
# The elements' type of 'pred_fn_pairs' in Op(case) must be tuple
def type_error_pred_fn_1():
layers.case(pred_fn_pairs=[1], default=fn_1)
self.assertRaises(TypeError, type_error_pred_fn_1)
# The tuple's size of 'pred_fn_pairs' in Op(case) must be 2
def type_error_pred_fn_2():
layers.case(pred_fn_pairs=[(1, 2, 3)], default=fn_1)
self.assertRaises(TypeError, type_error_pred_fn_2)
# The pred's type of 'pred_fn_pairs' in Op(case) must be bool Variable
def type_error_pred():
layers.case(pred_fn_pairs=[(1, fn_1)], default=fn_1)
self.assertRaises(TypeError, type_error_pred)
# The function of pred_fn_pairs in case must be callable
def type_error_fn():
layers.case(pred_fn_pairs=[(pred_1, 2)], default=fn_1)
self.assertRaises(TypeError, type_error_fn)
# The default in Op(case) must be callable
def type_error_default():
layers.case(pred_fn_pairs=[(pred_1, fn_1)], default=fn_1())
self.assertRaises(TypeError, type_error_default)
# when optimizer in case
class TestMutiTask(unittest.TestCase):
def test_optimizer_in_case(self):
BATCH_SIZE = 1
INPUT_SIZE = 784
EPOCH_NUM = 2
x = fluid.data(
name='x', shape=[BATCH_SIZE, INPUT_SIZE], dtype='float32')
y = fluid.data(
name='y', shape=[BATCH_SIZE, INPUT_SIZE], dtype='float32')
switch_id = fluid.data(name='switch_id', shape=[1], dtype='int32')
one = layers.fill_constant(shape=[1], dtype='int32', value=1)
adam = optimizer.Adam(learning_rate=0.001)
adagrad = optimizer.Adagrad(learning_rate=0.001)
def fn_1():
sum = layers.elementwise_mul(x, y)
loss = layers.mean(sum, name="f_1_loss")
adam.minimize(loss)
def fn_2():
sum = layers.elementwise_mul(x, y)
loss = layers.mean(sum, name="f_2_loss")
adagrad.minimize(loss)
layers.case(pred_fn_pairs=[(switch_id == one, fn_1)], default=fn_2)
exe = fluid.Executor(fluid.CPUPlace())
exe.run(fluid.default_startup_program())
for epoch in range(EPOCH_NUM):
np.random.seed(epoch)
feed_image = np.random.random(
size=[BATCH_SIZE, INPUT_SIZE]).astype('float32')
main_program = fluid.default_main_program()
out = exe.run(main_program,
feed={
'x': feed_image,
'y': feed_image,
'switch_id': np.array([epoch]).astype('int32')
},
fetch_list=[])
if __name__ == '__main__':
unittest.main()