You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
Paddle/python/paddle/fluid/tests/unittests/test_cast_op.py

96 lines
3.1 KiB

# Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
from __future__ import print_function
import op_test
import unittest
import numpy as np
import paddle
import paddle.fluid.core as core
import paddle.fluid as fluid
from paddle.fluid import compiler, Program, program_guard
class TestCastOp1(op_test.OpTest):
def setUp(self):
ipt = np.random.random(size=[10, 10])
self.inputs = {'X': ipt.astype('float32')}
self.outputs = {'Out': ipt.astype('float64')}
self.attrs = {
'in_dtype': int(core.VarDesc.VarType.FP32),
'out_dtype': int(core.VarDesc.VarType.FP64)
}
self.op_type = 'cast'
def test_check_output(self):
self.check_output()
def test_grad(self):
self.check_grad(['X'], ['Out'])
class TestCastOp2(op_test.OpTest):
def setUp(self):
ipt = np.random.random(size=[10, 10])
self.inputs = {'X': ipt.astype('float16')}
self.outputs = {'Out': ipt.astype('float32')}
self.attrs = {
'in_dtype': int(core.VarDesc.VarType.FP16),
'out_dtype': int(core.VarDesc.VarType.FP32)
}
self.op_type = 'cast'
def test_check_output(self):
self.check_output(atol=1e-3)
class TestCastOp3(op_test.OpTest):
def setUp(self):
ipt = np.random.random(size=[10, 10])
self.inputs = {'X': ipt.astype('float32')}
self.outputs = {'Out': ipt.astype('float16')}
self.attrs = {
'in_dtype': int(core.VarDesc.VarType.FP32),
'out_dtype': int(core.VarDesc.VarType.FP16)
}
self.op_type = 'cast'
def test_check_output(self):
self.check_output(atol=1e-3)
class TestCastOpError(unittest.TestCase):
def test_errors(self):
with program_guard(Program(), Program()):
# The input type of cast_op must be Variable.
x1 = fluid.create_lod_tensor(
np.array([[-1]]), [[1]], fluid.CPUPlace())
self.assertRaises(TypeError, fluid.layers.cast, x1, 'int32')
# The input dtype of cast_op must be bool, float16, float32, float64, int32, int64, uint8.
x2 = fluid.layers.data(name='x2', shape=[4], dtype='int16')
self.assertRaises(TypeError, fluid.layers.cast, x2, 'int32')
def test_dtype_type():
x4 = fluid.layers.data(name='x4', shape=[4], dtype='int32')
output = fluid.layers.cast(x=x4, dtype='int16')
self.assertRaises(TypeError, test_dtype_type)
if __name__ == '__main__':
paddle.enable_static()
unittest.main()