You can not select more than 25 topics
Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
156 lines
5.0 KiB
156 lines
5.0 KiB
# Copyright (c) 2019 PaddlePaddle Authors. All Rights Reserved.
|
|
#
|
|
# Licensed under the Apache License, Version 2.0 (the "License");
|
|
# you may not use this file except in compliance with the License.
|
|
# You may obtain a copy of the License at
|
|
#
|
|
# http://www.apache.org/licenses/LICENSE-2.0
|
|
#
|
|
# Unless required by applicable law or agreed to in writing, software
|
|
# distributed under the License is distributed on an "AS IS" BASIS,
|
|
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
# See the License for the specific language governing permissions and
|
|
# limitations under the License.
|
|
|
|
from __future__ import print_function
|
|
|
|
import unittest
|
|
import numpy as np
|
|
from op_test import OpTest
|
|
import paddle.fluid.core as core
|
|
import paddle.fluid as fluid
|
|
|
|
|
|
class TestCenterLossOp(OpTest):
|
|
def setUp(self):
|
|
self.op_type = "center_loss"
|
|
self.dtype = np.float64
|
|
self.init_dtype_type()
|
|
batch_size = 12
|
|
feet_dim = 10
|
|
cluster_num = 8
|
|
self.attrs = {}
|
|
self.attrs['cluster_num'] = cluster_num
|
|
self.attrs['lambda'] = 0.1
|
|
self.config()
|
|
self.attrs['need_update'] = self.need_update
|
|
labels = np.random.randint(cluster_num, size=batch_size, dtype='int64')
|
|
feat = np.random.random((batch_size, feet_dim)).astype(np.float64)
|
|
centers = np.random.random((cluster_num, feet_dim)).astype(np.float64)
|
|
var_sum = np.zeros((cluster_num, feet_dim), dtype=np.float64)
|
|
centers_select = centers[labels]
|
|
output = feat - centers_select
|
|
diff_square = np.square(output).reshape(batch_size, feet_dim)
|
|
loss = 0.5 * np.sum(diff_square, axis=1).reshape(batch_size, 1)
|
|
cout = []
|
|
for i in range(cluster_num):
|
|
cout.append(0)
|
|
for i in range(batch_size):
|
|
cout[labels[i]] += 1
|
|
var_sum[labels[i]] += output[i]
|
|
for i in range(cluster_num):
|
|
var_sum[i] /= (1 + cout[i])
|
|
var_sum *= 0.1
|
|
result = centers + var_sum
|
|
rate = np.array([0.1]).astype(np.float64)
|
|
|
|
self.inputs = {
|
|
'X': feat,
|
|
'Label': labels,
|
|
'Centers': centers,
|
|
'CenterUpdateRate': rate
|
|
}
|
|
|
|
if self.need_update == True:
|
|
self.outputs = {
|
|
'SampleCenterDiff': output,
|
|
'Loss': loss,
|
|
'CentersOut': result
|
|
}
|
|
else:
|
|
self.outputs = {
|
|
'SampleCenterDiff': output,
|
|
'Loss': loss,
|
|
'CentersOut': centers
|
|
}
|
|
|
|
def config(self):
|
|
self.need_update = True
|
|
|
|
def init_dtype_type(self):
|
|
pass
|
|
|
|
def test_check_output(self):
|
|
self.check_output()
|
|
|
|
def test_check_grad(self):
|
|
self.check_grad(['X'], 'Loss')
|
|
|
|
|
|
class TestCenterLossOpNoUpdate(TestCenterLossOp):
|
|
def config(self):
|
|
self.need_update = False
|
|
|
|
|
|
class BadInputTestCenterLoss(unittest.TestCase):
|
|
def test_error(self):
|
|
with fluid.program_guard(fluid.Program()):
|
|
|
|
def test_bad_x():
|
|
data = [[1, 2, 3, 4], [5, 6, 7, 8]]
|
|
label = fluid.layers.data(
|
|
name='label', shape=[2, 1], dtype='int32')
|
|
res = fluid.layers.center_loss(
|
|
data,
|
|
label,
|
|
num_classes=1000,
|
|
alpha=0.2,
|
|
param_attr=fluid.initializer.Xavier(uniform=False),
|
|
update_center=True)
|
|
|
|
self.assertRaises(TypeError, test_bad_x)
|
|
|
|
def test_bad_y():
|
|
data = fluid.layers.data(
|
|
name='data', shape=[2, 32], dtype='float32')
|
|
label = [[2], [3]]
|
|
res = fluid.layers.center_loss(
|
|
data,
|
|
label,
|
|
num_classes=1000,
|
|
alpha=0.2,
|
|
param_attr=fluid.initializer.Xavier(uniform=False),
|
|
update_center=True)
|
|
|
|
self.assertRaises(TypeError, test_bad_y)
|
|
|
|
def test_bad_alpha():
|
|
data = fluid.layers.data(
|
|
name='data2',
|
|
shape=[2, 32],
|
|
dtype='float32',
|
|
append_batch_size=False)
|
|
label = fluid.layers.data(
|
|
name='label2',
|
|
shape=[2, 1],
|
|
dtype='int32',
|
|
append_batch_size=False)
|
|
alpha = fluid.layers.data(
|
|
name='alpha',
|
|
shape=[1],
|
|
dtype='int64',
|
|
append_batch_size=False)
|
|
res = fluid.layers.center_loss(
|
|
data,
|
|
label,
|
|
num_classes=1000,
|
|
alpha=alpha,
|
|
param_attr=fluid.initializer.Xavier(uniform=False),
|
|
update_center=True)
|
|
|
|
self.assertRaises(TypeError, test_bad_alpha)
|
|
|
|
|
|
if __name__ == "__main__":
|
|
unittest.main()
|