You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
Paddle/python/paddle/fluid/tests/unittests/test_center_loss.py

156 lines
5.0 KiB

# Copyright (c) 2019 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
from __future__ import print_function
import unittest
import numpy as np
from op_test import OpTest
import paddle.fluid.core as core
import paddle.fluid as fluid
class TestCenterLossOp(OpTest):
def setUp(self):
self.op_type = "center_loss"
self.dtype = np.float64
self.init_dtype_type()
batch_size = 12
feet_dim = 10
cluster_num = 8
self.attrs = {}
self.attrs['cluster_num'] = cluster_num
self.attrs['lambda'] = 0.1
self.config()
self.attrs['need_update'] = self.need_update
labels = np.random.randint(cluster_num, size=batch_size, dtype='int64')
feat = np.random.random((batch_size, feet_dim)).astype(np.float64)
centers = np.random.random((cluster_num, feet_dim)).astype(np.float64)
var_sum = np.zeros((cluster_num, feet_dim), dtype=np.float64)
centers_select = centers[labels]
output = feat - centers_select
diff_square = np.square(output).reshape(batch_size, feet_dim)
loss = 0.5 * np.sum(diff_square, axis=1).reshape(batch_size, 1)
cout = []
for i in range(cluster_num):
cout.append(0)
for i in range(batch_size):
cout[labels[i]] += 1
var_sum[labels[i]] += output[i]
for i in range(cluster_num):
var_sum[i] /= (1 + cout[i])
var_sum *= 0.1
result = centers + var_sum
rate = np.array([0.1]).astype(np.float64)
self.inputs = {
'X': feat,
'Label': labels,
'Centers': centers,
'CenterUpdateRate': rate
}
if self.need_update == True:
self.outputs = {
'SampleCenterDiff': output,
'Loss': loss,
'CentersOut': result
}
else:
self.outputs = {
'SampleCenterDiff': output,
'Loss': loss,
'CentersOut': centers
}
def config(self):
self.need_update = True
def init_dtype_type(self):
pass
def test_check_output(self):
self.check_output()
def test_check_grad(self):
self.check_grad(['X'], 'Loss')
class TestCenterLossOpNoUpdate(TestCenterLossOp):
def config(self):
self.need_update = False
class BadInputTestCenterLoss(unittest.TestCase):
def test_error(self):
with fluid.program_guard(fluid.Program()):
def test_bad_x():
data = [[1, 2, 3, 4], [5, 6, 7, 8]]
label = fluid.layers.data(
name='label', shape=[2, 1], dtype='int32')
res = fluid.layers.center_loss(
data,
label,
num_classes=1000,
alpha=0.2,
param_attr=fluid.initializer.Xavier(uniform=False),
update_center=True)
self.assertRaises(TypeError, test_bad_x)
def test_bad_y():
data = fluid.layers.data(
name='data', shape=[2, 32], dtype='float32')
label = [[2], [3]]
res = fluid.layers.center_loss(
data,
label,
num_classes=1000,
alpha=0.2,
param_attr=fluid.initializer.Xavier(uniform=False),
update_center=True)
self.assertRaises(TypeError, test_bad_y)
def test_bad_alpha():
data = fluid.layers.data(
name='data2',
shape=[2, 32],
dtype='float32',
append_batch_size=False)
label = fluid.layers.data(
name='label2',
shape=[2, 1],
dtype='int32',
append_batch_size=False)
alpha = fluid.layers.data(
name='alpha',
shape=[1],
dtype='int64',
append_batch_size=False)
res = fluid.layers.center_loss(
data,
label,
num_classes=1000,
alpha=alpha,
param_attr=fluid.initializer.Xavier(uniform=False),
update_center=True)
self.assertRaises(TypeError, test_bad_alpha)
if __name__ == "__main__":
unittest.main()