You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
Paddle/python/paddle/fluid/tests/unittests/test_cholesky_op.py

152 lines
5.5 KiB

# Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
from __future__ import print_function
import unittest
import numpy as np
import paddle
import paddle.fluid as fluid
import paddle.fluid.layers as layers
import paddle.fluid.core as core
from op_test import OpTest, skip_check_grad_ci
from gradient_checker import grad_check
from decorator_helper import prog_scope
@skip_check_grad_ci(
reason="The input of cholesky_op should always be symmetric positive-definite. "
"However, OpTest calculates the numeric gradient of each element in input "
"via small finite difference, which makes the input no longer symmetric "
"positive-definite thus can not compute the Cholesky decomposition. "
"While we can use the gradient_checker.grad_check to perform gradient "
"check of cholesky_op, since it supports check gradient with a program "
"and we can construct symmetric positive-definite matrices in the program")
class TestCholeskyOp(OpTest):
def setUp(self):
self.op_type = "cholesky"
self._input_shape = (2, 32, 32)
self._upper = True
self.init_config()
self.trans_dims = list(range(len(self._input_shape) - 2)) + [
len(self._input_shape) - 1, len(self._input_shape) - 2
]
self.root_data = np.random.random(self._input_shape).astype("float64")
# construct symmetric positive-definite matrice
input_data = np.matmul(
self.root_data, self.root_data.transpose(self.trans_dims)) + 1e-05
output_data = np.linalg.cholesky(input_data).astype("float64")
if self._upper:
output_data = output_data.transpose(self.trans_dims)
self.inputs = {"X": input_data}
self.attrs = {"upper": self._upper}
self.outputs = {"Out": output_data}
def test_check_output(self):
self.check_output()
def test_check_grad(self):
places = [fluid.CPUPlace()]
if core.is_compiled_with_cuda():
places.append(fluid.CUDAPlace(0))
for p in places:
self.func(p)
@prog_scope()
def func(self, place):
# use small size since Jacobian gradients is time consuming
root_data = self.root_data[..., :3, :3]
prog = fluid.Program()
with fluid.program_guard(prog):
root = layers.create_parameter(
dtype=root_data.dtype, shape=root_data.shape)
root_t = layers.transpose(root, self.trans_dims)
x = layers.matmul(x=root, y=root_t) + 1e-05
out = paddle.cholesky(x, upper=self.attrs["upper"])
grad_check(root, out, x_init=root_data, place=place)
def init_config(self):
self._upper = True
class TestCholeskyOpLower(TestCholeskyOp):
def init_config(self):
self._upper = False
class TestCholeskyOp2D(TestCholeskyOp):
def init_config(self):
self._input_shape = (64, 64)
class TestDygraph(unittest.TestCase):
def test_dygraph(self):
paddle.disable_static()
a = np.random.rand(3, 3)
a_t = np.transpose(a, [1, 0])
x_data = np.matmul(a, a_t) + 1e-03
x = paddle.to_tensor(x_data)
out = paddle.cholesky(x, upper=False)
class TestCholeskySingularAPI(unittest.TestCase):
def setUp(self):
self.places = [fluid.CPUPlace()]
if core.is_compiled_with_cuda():
self.places.append(fluid.CUDAPlace(0))
def check_static_result(self, place, with_out=False):
with fluid.program_guard(fluid.Program(), fluid.Program()):
input = fluid.data(name="input", shape=[4, 4], dtype="float64")
result = paddle.cholesky(input)
input_np = np.zeros([4, 4]).astype("float64")
exe = fluid.Executor(place)
try:
fetches = exe.run(fluid.default_main_program(),
feed={"input": input_np},
fetch_list=[result])
except RuntimeError as ex:
print("The mat is singular")
pass
except ValueError as ex:
print("The mat is singular")
pass
def test_static(self):
for place in self.places:
self.check_static_result(place=place)
def test_dygraph(self):
for place in self.places:
with fluid.dygraph.guard(place):
input_np = np.array([[[1, 2, 3], [4, 5, 6], [7, 8, 9]],
[[10, 11, 12], [13, 14, 15],
[16, 17, 18]]]).astype("float64")
input = fluid.dygraph.to_variable(input_np)
try:
result = paddle.cholesky(input)
except RuntimeError as ex:
print("The mat is singular")
pass
except ValueError as ex:
print("The mat is singular")
pass
if __name__ == "__main__":
paddle.enable_static()
unittest.main()