You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
Paddle/python/paddle/fluid/tests/unittests/test_clip_op.py

193 lines
6.4 KiB

# Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
from __future__ import print_function
import unittest
import numpy as np
import paddle
import paddle.fluid as fluid
from paddle.fluid import Program, program_guard
from op_test import OpTest
class TestClipOp(OpTest):
def setUp(self):
self.max_relative_error = 0.006
self.inputs = {}
self.initTestCase()
self.op_type = "clip"
self.attrs = {}
self.attrs['min'] = self.min
self.attrs['max'] = self.max
if 'Min' in self.inputs:
min_v = self.inputs['Min']
else:
min_v = self.attrs['min']
if 'Max' in self.inputs:
max_v = self.inputs['Max']
else:
max_v = self.attrs['max']
input = np.random.random(self.shape).astype("float32")
input[np.abs(input - min_v) < self.max_relative_error] = 0.5
input[np.abs(input - max_v) < self.max_relative_error] = 0.5
self.inputs['X'] = input
self.outputs = {'Out': np.clip(self.inputs['X'], min_v, max_v)}
def test_check_output(self):
self.check_output()
def test_check_grad_normal(self):
self.check_grad(['X'], 'Out')
def initTestCase(self):
self.shape = (4, 10, 10)
self.max = 0.8
self.min = 0.3
self.inputs['Max'] = np.array([0.8]).astype('float32')
self.inputs['Min'] = np.array([0.1]).astype('float32')
class TestCase1(TestClipOp):
def initTestCase(self):
self.shape = (8, 16, 8)
self.max = 0.7
self.min = 0.0
class TestCase2(TestClipOp):
def initTestCase(self):
self.shape = (8, 16)
self.max = 1.0
self.min = 0.0
class TestCase3(TestClipOp):
def initTestCase(self):
self.shape = (4, 8, 16)
self.max = 0.7
self.min = 0.2
class TestCase4(TestClipOp):
def initTestCase(self):
self.shape = (4, 8, 8)
self.max = 0.7
self.min = 0.2
self.inputs['Max'] = np.array([0.8]).astype('float32')
self.inputs['Min'] = np.array([0.3]).astype('float32')
class TestCase5(TestClipOp):
def initTestCase(self):
self.shape = (4, 8, 16)
self.max = 0.5
self.min = 0.5
class TestClipOpError(unittest.TestCase):
def test_errors(self):
with program_guard(Program(), Program()):
input_data = np.random.random((2, 4)).astype("float32")
def test_Variable():
fluid.layers.clip(x=input_data, min=-1.0, max=1.0)
self.assertRaises(TypeError, test_Variable)
def test_dtype():
x2 = fluid.layers.data(name='x2', shape=[1], dtype='int32')
fluid.layers.clip(x=x2, min=-1.0, max=1.0)
self.assertRaises(TypeError, test_dtype)
class TestClipAPI(unittest.TestCase):
def test_clip(self):
paddle.enable_static()
data_shape = [1, 9, 9, 4]
data = np.random.random(data_shape).astype('float32')
images = fluid.data(name='image', shape=data_shape, dtype='float32')
min = fluid.data(name='min', shape=[1], dtype='float32')
max = fluid.data(name='max', shape=[1], dtype='float32')
place = fluid.CUDAPlace(0) if fluid.core.is_compiled_with_cuda(
) else fluid.CPUPlace()
exe = fluid.Executor(place)
out_1 = paddle.clip(images, min=min, max=max)
out_2 = paddle.clip(images, min=0.2, max=0.9)
out_3 = paddle.clip(images, min=0.3)
out_4 = paddle.clip(images, max=0.7)
out_5 = paddle.clip(images, min=min)
out_6 = paddle.clip(images, max=max)
out_7 = paddle.clip(images, max=-1.)
out_8 = paddle.clip(images)
out_9 = paddle.clip(paddle.cast(images, 'float64'), min=0.2, max=0.9)
res1, res2, res3, res4, res5, res6, res7, res8, res9 = exe.run(
fluid.default_main_program(),
feed={
"image": data,
"min": np.array([0.2]).astype('float32'),
"max": np.array([0.8]).astype('float32')
},
fetch_list=[
out_1, out_2, out_3, out_4, out_5, out_6, out_7, out_8, out_9
])
self.assertTrue(np.allclose(res1, data.clip(0.2, 0.8)))
self.assertTrue(np.allclose(res2, data.clip(0.2, 0.9)))
self.assertTrue(np.allclose(res3, data.clip(min=0.3)))
self.assertTrue(np.allclose(res4, data.clip(max=0.7)))
self.assertTrue(np.allclose(res5, data.clip(min=0.2)))
self.assertTrue(np.allclose(res6, data.clip(max=0.8)))
self.assertTrue(np.allclose(res7, data.clip(max=-1)))
self.assertTrue(np.allclose(res8, data))
self.assertTrue(
np.allclose(res9, data.astype(np.float64).clip(0.2, 0.9)))
def test_clip_dygraph(self):
place = fluid.CUDAPlace(0) if fluid.core.is_compiled_with_cuda(
) else fluid.CPUPlace()
paddle.disable_static(place)
data_shape = [1, 9, 9, 4]
data = np.random.random(data_shape).astype('float32')
images = paddle.to_tensor(data, dtype='float32')
v_min = paddle.to_tensor(np.array([0.2], dtype=np.float32))
v_max = paddle.to_tensor(np.array([0.8], dtype=np.float32))
out_1 = paddle.clip(images, min=0.2, max=0.8)
out_2 = paddle.clip(images, min=0.2, max=0.9)
out_3 = paddle.clip(images, min=v_min, max=v_max)
self.assertTrue(np.allclose(out_1.numpy(), data.clip(0.2, 0.8)))
self.assertTrue(np.allclose(out_2.numpy(), data.clip(0.2, 0.9)))
self.assertTrue(np.allclose(out_3.numpy(), data.clip(0.2, 0.8)))
def test_errors(self):
paddle.enable_static()
x1 = fluid.data(name='x1', shape=[1], dtype="int16")
x2 = fluid.data(name='x2', shape=[1], dtype="int8")
self.assertRaises(TypeError, paddle.clip, x=x1, min=0.2, max=0.8)
self.assertRaises(TypeError, paddle.clip, x=x2, min=0.2, max=0.8)
if __name__ == '__main__':
unittest.main()