You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
Paddle/python/paddle/fluid/tests/unittests/test_communicator_sync.py

69 lines
2.2 KiB

# Copyright (c) 2019 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
from __future__ import print_function
import unittest
import time
import os
import paddle
paddle.enable_static()
import paddle.fluid as fluid
import paddle.distributed.fleet.base.role_maker as role_maker
import paddle.distributed.fleet as fleet
class TestCommunicator(unittest.TestCase):
def net(self):
x = fluid.layers.data(name='x', shape=[1], dtype='float32')
y = fluid.layers.data(name='y', shape=[1], dtype='float32')
cost = fluid.layers.square_error_cost(input=x, label=y)
avg_cost = fluid.layers.mean(cost)
return avg_cost
def test_communicator_sync(self):
os.environ["TRAINING_ROLE"] = "TRAINER"
os.environ["PADDLE_PSERVER_NUMS"] = "2"
os.environ["PADDLE_TRAINERS_NUM"] = "2"
os.environ["POD_IP"] = "127.0.0.1"
os.environ["PADDLE_PORT"] = "36001"
os.environ["PADDLE_TRAINER_ID"] = "0"
os.environ["PADDLE_TRAINERS_NUM"] = "2"
os.environ["PADDLE_PSERVERS_IP_PORT_LIST"] = \
"127.0.0.1:36001,127.0.0.2:36001"
fleet.init(role_maker.PaddleCloudRoleMaker())
avg_cost = self.net()
optimizer = fluid.optimizer.SGD(0.01)
strategy = paddle.distributed.fleet.DistributedStrategy()
strategy.a_sync = False
strategy.a_sync_configs = {"launch_barrier": False}
optimizer = fleet.distributed_optimizer(optimizer, strategy)
optimizer.minimize(avg_cost)
os.environ["TEST_MODE"] = "1"
fleet.init_worker()
time.sleep(10)
fleet.stop_worker()
if __name__ == '__main__':
unittest.main()