You can not select more than 25 topics
Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
125 lines
4.2 KiB
125 lines
4.2 KiB
# Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved.
|
|
#
|
|
# Licensed under the Apache License, Version 2.0 (the "License");
|
|
# you may not use this file except in compliance with the License.
|
|
# You may obtain a copy of the License at
|
|
#
|
|
# http://www.apache.org/licenses/LICENSE-2.0
|
|
#
|
|
# Unless required by applicable law or agreed to in writing, software
|
|
# distributed under the License is distributed on an "AS IS" BASIS,
|
|
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
# See the License for the specific language governing permissions and
|
|
# limitations under the License.
|
|
|
|
from __future__ import print_function
|
|
|
|
import unittest
|
|
import numpy as np
|
|
|
|
import paddle
|
|
|
|
import paddle.fluid.core as core
|
|
|
|
|
|
class Optimization_ex1(paddle.nn.Layer):
|
|
def __init__(self,
|
|
shape,
|
|
dtype,
|
|
param_attr=paddle.nn.initializer.Uniform(
|
|
low=-5., high=5.)):
|
|
super(Optimization_ex1, self).__init__()
|
|
|
|
self.theta0 = self.create_parameter(
|
|
shape=shape, attr=param_attr, dtype=dtype, is_bias=False)
|
|
self.theta1 = self.create_parameter(
|
|
shape=shape, attr=param_attr, dtype=dtype, is_bias=False)
|
|
self.A = paddle.to_tensor(
|
|
np.random.random((4, 4)).astype(dtype) + np.random.random((4, 4))
|
|
.astype(dtype) * 1j)
|
|
self.B = paddle.to_tensor(
|
|
np.random.random((4, 4)).astype(dtype) + np.random.random(
|
|
(4, 4)).astype(dtype) * 1j,
|
|
stop_gradient=False)
|
|
|
|
def forward(self, mode=1):
|
|
jj = paddle.to_tensor(np.array([1j]).astype(np.complex64))
|
|
if mode == 1:
|
|
# run all calc in one step
|
|
loss = paddle.sum(self.A + (self.theta0 + self.theta1 * jj)) * (
|
|
paddle.sum(self.A + (self.theta0 + self.theta1 * jj)).conj())
|
|
return loss.real()
|
|
elif mode == 2:
|
|
# run in two step
|
|
self.theta = self.theta0 + self.theta1 * jj
|
|
loss = paddle.sum(self.A + self.theta) * (
|
|
paddle.sum(self.A + self.theta).conj())
|
|
return loss.real()
|
|
elif mode == 3:
|
|
# run without param
|
|
loss = paddle.sum(self.A + self.B) * (
|
|
paddle.sum(self.A + self.B).conj())
|
|
return loss.real()
|
|
else:
|
|
raise NotImplementedError
|
|
|
|
|
|
class TestComplexGradAccumulated(unittest.TestCase):
|
|
def setUp(self):
|
|
self.devices = ['cpu']
|
|
if core.is_compiled_with_cuda():
|
|
self.devices.append('gpu')
|
|
self.iter = 3
|
|
self.learning_rate = 0.5
|
|
self.dtypes = ['float32', 'float64']
|
|
self.theta_size = [4, 4]
|
|
|
|
def train(self, device, dtype, mode):
|
|
paddle.set_device(device)
|
|
|
|
myLayer = Optimization_ex1(self.theta_size, dtype)
|
|
optimizer = paddle.optimizer.SGD(learning_rate=self.learning_rate,
|
|
parameters=myLayer.parameters())
|
|
|
|
for iter in range(self.iter):
|
|
loss = myLayer(mode)
|
|
loss.backward()
|
|
|
|
optimizer.step()
|
|
optimizer.clear_grad()
|
|
|
|
def train_no_clear_grad(self, device, dtype, mode):
|
|
paddle.set_device(device)
|
|
|
|
myLayer = Optimization_ex1(self.theta_size, dtype)
|
|
optimizer = paddle.optimizer.SGD(learning_rate=self.learning_rate,
|
|
parameters=myLayer.parameters())
|
|
|
|
for iter in range(self.iter):
|
|
loss = myLayer(mode)
|
|
loss.backward()
|
|
|
|
optimizer.step()
|
|
|
|
def test_case_one_step(self):
|
|
for dev in self.devices:
|
|
for dtype in self.dtypes:
|
|
self.train(dev, dtype, 1)
|
|
self.train_no_clear_grad(dev, dtype, 1)
|
|
|
|
def test_case_two_step(self):
|
|
for dev in self.devices:
|
|
for dtype in self.dtypes:
|
|
self.train(dev, dtype, 2)
|
|
self.train_no_clear_grad(dev, dtype, 2)
|
|
|
|
def test_case_non_param(self):
|
|
for dev in self.devices:
|
|
for dtype in self.dtypes:
|
|
self.train(dev, dtype, 3)
|
|
self.train_no_clear_grad(dev, dtype, 3)
|
|
|
|
|
|
if __name__ == '__main__':
|
|
unittest.main()
|