You can not select more than 25 topics
Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
73 lines
2.1 KiB
73 lines
2.1 KiB
# Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
|
|
#
|
|
# Licensed under the Apache License, Version 2.0 (the "License");
|
|
# you may not use this file except in compliance with the License.
|
|
# You may obtain a copy of the License at
|
|
#
|
|
# http://www.apache.org/licenses/LICENSE-2.0
|
|
#
|
|
# Unless required by applicable law or agreed to in writing, software
|
|
# distributed under the License is distributed on an "AS IS" BASIS,
|
|
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
# See the License for the specific language governing permissions and
|
|
# limitations under the License.
|
|
|
|
from __future__ import print_function
|
|
|
|
import unittest
|
|
import numpy as np
|
|
|
|
import paddle
|
|
|
|
import paddle.fluid.core as core
|
|
|
|
|
|
class Optimization_ex1(paddle.nn.Layer):
|
|
def __init__(self,
|
|
shape,
|
|
param_attr=paddle.nn.initializer.Uniform(
|
|
low=-5., high=5.),
|
|
dtype='float32'):
|
|
super(Optimization_ex1, self).__init__()
|
|
|
|
self.theta = self.create_parameter(
|
|
shape=shape, attr=param_attr, dtype=dtype, is_bias=False)
|
|
self.A = paddle.to_tensor(
|
|
np.random.randn(4, 4) + np.random.randn(4, 4) * 1j)
|
|
|
|
def forward(self):
|
|
loss = paddle.add(self.theta, self.A)
|
|
return loss.real()
|
|
|
|
|
|
class TestComplexSimpleNet(unittest.TestCase):
|
|
def setUp(self):
|
|
self.devices = ['cpu']
|
|
if core.is_compiled_with_cuda():
|
|
self.devices.append('gpu')
|
|
self.iter = 10
|
|
self.learning_rate = 0.5
|
|
self.theta_size = [4, 4]
|
|
|
|
def train(self, device):
|
|
paddle.set_device(device)
|
|
|
|
myLayer = Optimization_ex1(self.theta_size)
|
|
optimizer = paddle.optimizer.Adam(
|
|
learning_rate=self.learning_rate, parameters=myLayer.parameters())
|
|
|
|
for itr in range(self.iter):
|
|
loss = myLayer()
|
|
loss.backward()
|
|
|
|
optimizer.step()
|
|
optimizer.clear_grad()
|
|
|
|
def test_train_success(self):
|
|
for dev in self.devices:
|
|
self.train(dev)
|
|
|
|
|
|
if __name__ == '__main__':
|
|
unittest.main()
|