You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
Paddle/python/paddle/fluid/tests/unittests/test_conditional_block.py

85 lines
3.0 KiB

# Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
from __future__ import print_function
import numpy as np
import unittest
import paddle.fluid as fluid
import paddle.fluid.layers as layers
import paddle.fluid.core as core
from paddle.fluid.executor import Executor
from paddle.fluid.backward import append_backward
from paddle.fluid.layers.control_flow import ConditionalBlock
class ConditionalBlockTest(unittest.TestCase):
def test_forward(self):
main_program = fluid.Program()
startup_program = fluid.Program()
with fluid.program_guard(main_program, startup_program):
data = layers.data(name='X', shape=[1], dtype='float32')
data.stop_gradient = False
cond = ConditionalBlock(inputs=[data])
out = layers.create_tensor(dtype='float32')
with cond.block():
hidden = layers.fc(input=data, size=10)
layers.assign(hidden, out)
cpu = core.CPUPlace()
exe = Executor(cpu)
exe.run(startup_program)
x = np.random.random(size=(10, 1)).astype('float32')
outs = exe.run(main_program, feed={'X': x}, fetch_list=[out])[0]
print(outs)
loss = layers.mean(out)
append_backward(loss=loss)
outs = exe.run(
main_program,
feed={'X': x},
fetch_list=[main_program.block(0).var(data.name + "@GRAD")])[0]
print(outs)
class TestConditionalBlockOpInferShape(unittest.TestCase):
def test_infer_shape(self):
main_program = fluid.Program()
startup_program = fluid.Program()
with fluid.program_guard(main_program, startup_program):
global_block = main_program.global_block()
sub_block = main_program._create_block()
main_program._rollback()
step_scope = global_block.create_var(
type=core.VarDesc.VarType.STEP_SCOPES)
cond_var = layers.fill_constant(
shape=[1], dtype='bool', value=False)
op = global_block.append_op(
type='conditional_block',
inputs={
'Cond': [cond_var],
'Input': [],
},
outputs={'Out': [],
'Scope': [step_scope]},
attrs={'sub_block': sub_block,
'is_scalar_condition': True})
op.desc.infer_shape(global_block.desc)
if __name__ == '__main__':
unittest.main()