You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
Paddle/python/paddle/fluid/tests/unittests/test_conv1d_transpose_layer.py

231 lines
7.9 KiB

# Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import numpy as np
import paddle
from paddle import fluid, nn
import paddle.fluid.dygraph as dg
import paddle.nn.functional as F
import paddle.fluid.initializer as I
import unittest
class Conv1DTransposeTestCase(unittest.TestCase):
def __init__(self,
methodName='runTest',
batch_size=4,
spartial_shape=16,
in_channels=6,
out_channels=8,
filter_size=3,
output_size=None,
padding=0,
output_padding=0,
stride=1,
dilation=1,
groups=1,
no_bias=False,
data_format="NCL",
dtype="float32"):
super(Conv1DTransposeTestCase, self).__init__(methodName)
self.batch_size = batch_size
self.in_channels = in_channels
self.out_channels = out_channels
self.spartial_shape = spartial_shape
self.filter_size = filter_size
self.output_size = output_size
self.padding = padding
self.output_padding = output_padding
self.stride = stride
self.dilation = dilation
self.groups = groups
self.no_bias = no_bias
self.data_format = data_format
self.dtype = dtype
def setUp(self):
self.channel_last = False if self.data_format == "NCL" else True
input_shape = (self.batch_size, self.in_channels,
self.spartial_shape) if not self.channel_last else (
self.batch_size,
self.spartial_shape,
self.in_channels, )
self.input = np.random.randn(*input_shape).astype(self.dtype)
if isinstance(self.filter_size, int):
filter_size = [self.filter_size]
else:
filter_size = self.filter_size
self.weight_shape = weight_shape = (self.in_channels, self.out_channels
// self.groups) + tuple(filter_size)
self.weight = np.random.uniform(
-1, 1, size=weight_shape).astype(self.dtype)
if not self.no_bias:
self.bias = np.random.uniform(
-1, 1, size=(self.out_channels, )).astype(self.dtype)
else:
self.bias = None
def functional(self, place):
main = fluid.Program()
start = fluid.Program()
with fluid.unique_name.guard():
with fluid.program_guard(main, start):
input_shape = (-1, self.in_channels,
-1) if not self.channel_last else (
-1, -1, self.in_channels)
x_var = fluid.data("input", input_shape, dtype=self.dtype)
w_var = fluid.data(
"weight", self.weight_shape, dtype=self.dtype)
b_var = fluid.data(
"bias", (self.out_channels, ), dtype=self.dtype)
y_var = F.conv1d_transpose(
x_var,
w_var,
None if self.no_bias else b_var,
output_size=self.output_size,
padding=self.padding,
output_padding=self.output_padding,
stride=self.stride,
dilation=self.dilation,
groups=self.groups,
data_format=self.data_format)
feed_dict = {"input": self.input, "weight": self.weight}
if self.bias is not None:
feed_dict["bias"] = self.bias
exe = fluid.Executor(place)
exe.run(start)
y_np, = exe.run(main, feed=feed_dict, fetch_list=[y_var])
return y_np
def paddle_nn_layer(self):
x_var = paddle.to_tensor(self.input)
conv = nn.Conv1DTranspose(
self.in_channels,
self.out_channels,
self.filter_size,
padding=self.padding,
output_padding=self.output_padding,
stride=self.stride,
dilation=self.dilation,
groups=self.groups,
data_format=self.data_format)
conv.weight.set_value(self.weight)
if not self.no_bias:
conv.bias.set_value(self.bias)
y_var = conv(x_var, output_size=self.output_size)
y_np = y_var.numpy()
return y_np
def _test_equivalence(self, place):
result1 = self.functional(place)
with dg.guard(place):
result2 = self.paddle_nn_layer()
np.testing.assert_array_almost_equal(result1, result2)
def runTest(self):
place = fluid.CPUPlace()
self._test_equivalence(place)
if fluid.core.is_compiled_with_cuda():
place = fluid.CUDAPlace(0)
self._test_equivalence(place)
class Conv1DTransposeErrorTestCase(Conv1DTransposeTestCase):
def runTest(self):
place = fluid.CPUPlace()
with dg.guard(place):
with self.assertRaises(ValueError):
self.paddle_nn_layer()
def add_cases(suite):
suite.addTest(Conv1DTransposeTestCase(methodName='runTest'))
suite.addTest(
Conv1DTransposeTestCase(
methodName='runTest', stride=[2], no_bias=True, dilation=2))
suite.addTest(
Conv1DTransposeTestCase(
methodName='runTest',
filter_size=(3),
output_size=[36],
stride=[2],
dilation=2))
suite.addTest(
Conv1DTransposeTestCase(
methodName='runTest', stride=2, dilation=(2)))
suite.addTest(
Conv1DTransposeTestCase(
methodName='runTest', padding="valid"))
suite.addTest(
Conv1DTransposeTestCase(
methodName='runTest', padding='valid'))
suite.addTest(
Conv1DTransposeTestCase(
methodName='runTest', filter_size=1, padding=3))
suite.addTest(Conv1DTransposeTestCase(methodName='runTest', padding=[2]))
suite.addTest(
Conv1DTransposeTestCase(
methodName='runTest', data_format="NLC"))
suite.addTest(
Conv1DTransposeTestCase(
methodName='runTest', groups=2, padding="valid"))
suite.addTest(
Conv1DTransposeTestCase(
methodName='runTest',
out_channels=6,
in_channels=3,
groups=3,
padding="valid"))
suite.addTest(
Conv1DTransposeTestCase(
methodName='runTest',
data_format="NLC",
spartial_shape=16,
output_size=18))
suite.addTest(
Conv1DTransposeTestCase(
methodName='runTest', data_format="NLC", stride=3,
output_padding=2))
suite.addTest(Conv1DTransposeTestCase(methodName='runTest', padding=[1, 2]))
def add_error_cases(suite):
suite.addTest(
Conv1DTransposeErrorTestCase(
methodName='runTest', data_format="not_valid"))
suite.addTest(
Conv1DTransposeErrorTestCase(
methodName='runTest', in_channels=5, groups=2))
suite.addTest(
Conv1DTransposeErrorTestCase(
methodName='runTest', stride=2, output_padding=3))
suite.addTest(
Conv1DTransposeErrorTestCase(
methodName='runTest', output_size="not_valid"))
def load_tests(loader, standard_tests, pattern):
suite = unittest.TestSuite()
add_cases(suite)
add_error_cases(suite)
return suite
if __name__ == '__main__':
unittest.main()