You can not select more than 25 topics
Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
282 lines
9.6 KiB
282 lines
9.6 KiB
# Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved.
|
|
#
|
|
# Licensed under the Apache License, Version 2.0 (the "License");
|
|
# you may not use this file except in compliance with the License.
|
|
# You may obtain a copy of the License at
|
|
#
|
|
# http://www.apache.org/licenses/LICENSE-2.0
|
|
#
|
|
# Unless required by applicable law or agreed to in writing, software
|
|
# distributed under the License is distributed on an "AS IS" BASIS,
|
|
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
# See the License for the specific language governing permissions and
|
|
# limitations under the License.
|
|
|
|
import numpy as np
|
|
from paddle import fluid, nn
|
|
import paddle.fluid.dygraph as dg
|
|
import paddle.nn.functional as F
|
|
import paddle.fluid.initializer as I
|
|
import unittest
|
|
|
|
|
|
class Conv2DTransposeTestCase(unittest.TestCase):
|
|
def __init__(self,
|
|
methodName='runTest',
|
|
batch_size=4,
|
|
spartial_shape=(16, 16),
|
|
num_channels=6,
|
|
num_filters=8,
|
|
filter_size=3,
|
|
output_size=None,
|
|
output_padding=0,
|
|
padding=0,
|
|
stride=1,
|
|
dilation=1,
|
|
groups=1,
|
|
no_bias=False,
|
|
data_format="NCHW",
|
|
dtype="float32"):
|
|
super(Conv2DTransposeTestCase, self).__init__(methodName)
|
|
self.batch_size = batch_size
|
|
self.num_channels = num_channels
|
|
self.num_filters = num_filters
|
|
self.spartial_shape = spartial_shape
|
|
self.filter_size = filter_size
|
|
self.output_size = output_size
|
|
self.output_padding = output_padding
|
|
|
|
self.padding = padding
|
|
self.stride = stride
|
|
self.dilation = dilation
|
|
self.groups = groups
|
|
self.no_bias = no_bias
|
|
self.data_format = data_format
|
|
self.dtype = dtype
|
|
|
|
def setUp(self):
|
|
self.channel_last = self.data_format == "NHWC"
|
|
if self.channel_last:
|
|
input_shape = (self.batch_size, ) + self.spartial_shape + (
|
|
self.num_channels, )
|
|
else:
|
|
input_shape = (self.batch_size, self.num_channels
|
|
) + self.spartial_shape
|
|
self.input = np.random.randn(*input_shape).astype(self.dtype)
|
|
|
|
if isinstance(self.filter_size, int):
|
|
filter_size = [self.filter_size] * 2
|
|
else:
|
|
filter_size = self.filter_size
|
|
self.weight_shape = weight_shape = (self.num_channels, self.num_filters
|
|
// self.groups) + tuple(filter_size)
|
|
self.weight = np.random.uniform(
|
|
-1, 1, size=weight_shape).astype(self.dtype)
|
|
if not self.no_bias:
|
|
self.bias = np.random.uniform(
|
|
-1, 1, size=(self.num_filters, )).astype(self.dtype)
|
|
else:
|
|
self.bias = None
|
|
|
|
def fluid_layer(self, place):
|
|
main = fluid.Program()
|
|
start = fluid.Program()
|
|
with fluid.unique_name.guard():
|
|
with fluid.program_guard(main, start):
|
|
input_shape = (-1, -1, -1,self.num_channels) \
|
|
if self.channel_last else (-1, self.num_channels, -1, -1)
|
|
x_var = fluid.data("input", input_shape, dtype=self.dtype)
|
|
weight_attr = I.NumpyArrayInitializer(self.weight)
|
|
if self.bias is None:
|
|
bias_attr = False
|
|
else:
|
|
bias_attr = I.NumpyArrayInitializer(self.bias)
|
|
|
|
y_var = fluid.layers.conv2d_transpose(
|
|
x_var,
|
|
self.num_filters,
|
|
filter_size=self.filter_size,
|
|
output_size=self.output_size,
|
|
padding=self.padding,
|
|
stride=self.stride,
|
|
dilation=self.dilation,
|
|
groups=self.groups,
|
|
param_attr=weight_attr,
|
|
bias_attr=bias_attr,
|
|
data_format=self.data_format)
|
|
feed_dict = {"input": self.input}
|
|
exe = fluid.Executor(place)
|
|
exe.run(start)
|
|
y_np, = exe.run(main, feed=feed_dict, fetch_list=[y_var])
|
|
return y_np
|
|
|
|
def functional(self, place):
|
|
main = fluid.Program()
|
|
start = fluid.Program()
|
|
with fluid.unique_name.guard():
|
|
with fluid.program_guard(main, start):
|
|
input_shape = (-1, -1, -1,self.num_channels) \
|
|
if self.channel_last else (-1, self.num_channels, -1, -1)
|
|
x_var = fluid.data("input", input_shape, dtype=self.dtype)
|
|
w_var = fluid.data(
|
|
"weight", self.weight_shape, dtype=self.dtype)
|
|
b_var = fluid.data(
|
|
"bias", (self.num_filters, ), dtype=self.dtype)
|
|
|
|
if self.output_padding != 0:
|
|
output_size = None
|
|
else:
|
|
output_size = self.output_size
|
|
|
|
y_var = F.conv2d_transpose(
|
|
x_var,
|
|
w_var,
|
|
None if self.no_bias else b_var,
|
|
output_size=output_size,
|
|
padding=self.padding,
|
|
output_padding=self.output_padding,
|
|
stride=self.stride,
|
|
dilation=self.dilation,
|
|
groups=self.groups,
|
|
data_format=self.data_format)
|
|
feed_dict = {"input": self.input, "weight": self.weight}
|
|
if self.bias is not None:
|
|
feed_dict["bias"] = self.bias
|
|
exe = fluid.Executor(place)
|
|
exe.run(start)
|
|
y_np, = exe.run(main, feed=feed_dict, fetch_list=[y_var])
|
|
return y_np
|
|
|
|
def paddle_nn_layer(self):
|
|
x_var = dg.to_variable(self.input)
|
|
|
|
if self.output_padding != 0:
|
|
output_size = None
|
|
else:
|
|
output_size = self.output_size
|
|
|
|
conv = nn.Conv2DTranspose(
|
|
self.num_channels,
|
|
self.num_filters,
|
|
self.filter_size,
|
|
padding=self.padding,
|
|
output_padding=self.output_padding,
|
|
stride=self.stride,
|
|
dilation=self.dilation,
|
|
groups=self.groups,
|
|
data_format=self.data_format)
|
|
conv.weight.set_value(self.weight)
|
|
if not self.no_bias:
|
|
conv.bias.set_value(self.bias)
|
|
y_var = conv(x_var, output_size)
|
|
y_np = y_var.numpy()
|
|
return y_np
|
|
|
|
def _test_equivalence(self, place):
|
|
place = fluid.CPUPlace()
|
|
|
|
result1 = self.fluid_layer(place)
|
|
result2 = self.functional(place)
|
|
|
|
with dg.guard(place):
|
|
result3 = self.paddle_nn_layer()
|
|
|
|
np.testing.assert_array_almost_equal(result1, result2)
|
|
np.testing.assert_array_almost_equal(result2, result3)
|
|
|
|
def runTest(self):
|
|
place = fluid.CPUPlace()
|
|
self._test_equivalence(place)
|
|
|
|
if fluid.core.is_compiled_with_cuda():
|
|
place = fluid.CUDAPlace(0)
|
|
self._test_equivalence(place)
|
|
|
|
|
|
class Conv2DTransposeErrorTestCase(Conv2DTransposeTestCase):
|
|
def runTest(self):
|
|
place = fluid.CPUPlace()
|
|
with dg.guard(place):
|
|
with self.assertRaises(ValueError):
|
|
self.paddle_nn_layer()
|
|
|
|
|
|
def add_cases(suite):
|
|
suite.addTest(Conv2DTransposeTestCase(methodName='runTest'))
|
|
suite.addTest(
|
|
Conv2DTransposeTestCase(
|
|
methodName='runTest', stride=[1, 2], no_bias=True, dilation=2))
|
|
suite.addTest(
|
|
Conv2DTransposeTestCase(
|
|
methodName='runTest',
|
|
filter_size=(3, 3),
|
|
output_size=[20, 36],
|
|
stride=[1, 2],
|
|
dilation=2))
|
|
suite.addTest(
|
|
Conv2DTransposeTestCase(
|
|
methodName='runTest', stride=2, dilation=(2, 1)))
|
|
suite.addTest(
|
|
Conv2DTransposeTestCase(
|
|
methodName='runTest', padding="valid"))
|
|
suite.addTest(Conv2DTransposeTestCase(methodName='runTest', padding="same"))
|
|
suite.addTest(
|
|
Conv2DTransposeTestCase(
|
|
methodName='runTest', filter_size=1, padding=(2, 3)))
|
|
suite.addTest(
|
|
Conv2DTransposeTestCase(
|
|
methodName='runTest', padding=[1, 2, 2, 1]))
|
|
suite.addTest(
|
|
Conv2DTransposeTestCase(
|
|
methodName='runTest', padding=[[0, 0], [0, 0], [1, 2], [2, 1]]))
|
|
suite.addTest(
|
|
Conv2DTransposeTestCase(
|
|
methodName='runTest', data_format="NHWC"))
|
|
suite.addTest(
|
|
Conv2DTransposeTestCase(
|
|
methodName='runTest',
|
|
data_format="NHWC",
|
|
padding=[[0, 0], [1, 1], [2, 2], [0, 0]]))
|
|
suite.addTest(
|
|
Conv2DTransposeTestCase(
|
|
methodName='runTest', groups=2, padding="valid"))
|
|
suite.addTest(
|
|
Conv2DTransposeTestCase(
|
|
methodName='runTest',
|
|
num_filters=6,
|
|
num_channels=3,
|
|
groups=3,
|
|
padding="valid"))
|
|
suite.addTest(
|
|
Conv2DTransposeTestCase(
|
|
methodName='runTest',
|
|
num_filters=6,
|
|
num_channels=3,
|
|
spartial_shape=(7, 7),
|
|
filter_size=[5, 5],
|
|
groups=1,
|
|
padding=2,
|
|
stride=2,
|
|
output_size=[14, 14],
|
|
output_padding=[1, 1], ))
|
|
|
|
|
|
def add_error_cases(suite):
|
|
suite.addTest(
|
|
Conv2DTransposeErrorTestCase(
|
|
methodName='runTest', num_channels=5, groups=2))
|
|
suite.addTest(
|
|
Conv2DTransposeErrorTestCase(
|
|
methodName='runTest', output_size="not_valid"))
|
|
|
|
|
|
def load_tests(loader, standard_tests, pattern):
|
|
suite = unittest.TestSuite()
|
|
add_cases(suite)
|
|
add_error_cases(suite)
|
|
return suite
|
|
|
|
|
|
if __name__ == '__main__':
|
|
unittest.main()
|