You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
Paddle/python/paddle/fluid/tests/unittests/test_cuda_random_seed.py

164 lines
5.6 KiB

# Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
"""Test cloud role maker."""
from __future__ import print_function
import os
import unittest
import paddle.fluid.generator as generator
import time # temp for debug
import paddle.fluid as fluid
import numpy as np
import paddle
import paddle.fluid.core as core
class TestGeneratorSeed(unittest.TestCase):
"""
Test cases for cpu generator seed.
"""
def test_gen_dropout_dygraph(self):
gen = paddle.seed(12343)
fluid.enable_dygraph()
gen.manual_seed(111111111)
st = paddle.get_cuda_rng_state()
x = fluid.layers.uniform_random(
[2, 10], dtype="float32", min=0.0, max=1.0)
x_again = fluid.layers.uniform_random(
[2, 10], dtype="float32", min=0.0, max=1.0)
x_third = fluid.layers.uniform_random(
[2, 10], dtype="float32", min=0.0, max=1.0)
print("x: {}".format(x.numpy()))
print("x_again: {}".format(x_again.numpy()))
x = x + x_again + x_third
y = fluid.layers.dropout(x, 0.5)
paddle.set_cuda_rng_state(st)
x1 = fluid.layers.uniform_random(
[2, 10], dtype="float32", min=0.0, max=1.0)
x1_again = fluid.layers.uniform_random(
[2, 10], dtype="float32", min=0.0, max=1.0)
x1_third = fluid.layers.uniform_random(
[2, 10], dtype="float32", min=0.0, max=1.0)
x1 = x1 + x1_again + x1_third
y1 = fluid.layers.dropout(x1, 0.5)
y_np = y.numpy()
y1_np = y1.numpy()
if core.is_compiled_with_cuda():
print(">>>>>>> dropout dygraph >>>>>>>")
self.assertTrue(np.allclose(y_np, y1_np))
def test_generator_gaussian_random_dygraph(self):
"""Test Generator seed."""
fluid.enable_dygraph()
paddle.seed(12312321111)
x = fluid.layers.gaussian_random([120], dtype="float32")
st1 = paddle.get_cuda_rng_state()
x1 = fluid.layers.gaussian_random([120], dtype="float32")
paddle.set_cuda_rng_state(st1)
x2 = fluid.layers.gaussian_random([120], dtype="float32")
paddle.seed(12312321111)
x3 = fluid.layers.gaussian_random([120], dtype="float32")
x_np = x.numpy()
x1_np = x1.numpy()
x2_np = x2.numpy()
x3_np = x3.numpy()
if core.is_compiled_with_cuda():
print(">>>>>>> gaussian random dygraph >>>>>>>")
self.assertTrue(np.allclose(x1_np, x2_np))
self.assertTrue(np.allclose(x_np, x3_np))
def test_generator_randint_dygraph(self):
"""Test Generator seed."""
fluid.enable_dygraph()
gen = paddle.seed(12312321111)
x = paddle.randint(low=10, shape=[10], dtype="int32")
st1 = gen.get_state()
x1 = paddle.randint(low=10, shape=[10], dtype="int32")
gen.set_state(st1)
x2 = paddle.randint(low=10, shape=[10], dtype="int32")
paddle.seed(12312321111)
x3 = paddle.randint(low=10, shape=[10], dtype="int32")
x_np = x.numpy()
x1_np = x1.numpy()
x2_np = x2.numpy()
x3_np = x3.numpy()
if core.is_compiled_with_cuda():
print(">>>>>>> randint dygraph >>>>>>>")
self.assertTrue(np.allclose(x1_np, x2_np))
self.assertTrue(np.allclose(x_np, x3_np))
def test_gen_TruncatedNormal_initializer(self):
fluid.disable_dygraph()
gen = paddle.seed(123123143)
cur_state = paddle.get_cuda_rng_state()
startup_program = fluid.Program()
train_program = fluid.Program()
with fluid.program_guard(train_program, startup_program):
# example 1:
# attr shape is a list which doesn't contain tensor Variable.
x = fluid.layers.uniform_random(shape=[2, 10])
result_1 = fluid.layers.fc(
input=x,
size=10,
param_attr=fluid.initializer.TruncatedNormal(
loc=0.0, scale=2.0))
result_2 = fluid.layers.fc(
input=x,
size=10,
param_attr=fluid.initializer.TruncatedNormal(
loc=0.0, scale=2.0))
exe = fluid.Executor(fluid.CPUPlace())
exe.run(startup_program)
out1 = exe.run(train_program,
feed={},
fetch_list=[result_1, result_2])
paddle.seed(123123143)
with fluid.program_guard(train_program, startup_program):
exe.run(startup_program)
out2 = exe.run(train_program,
feed={},
fetch_list=[result_1, result_2])
out1_res1 = np.array(out1[0])
out1_res2 = np.array(out1[1])
out2_res1 = np.array(out2[0])
out2_res2 = np.array(out2[1])
if core.is_compiled_with_cuda():
print(">>>>>>> truncated normal static >>>>>>>")
self.assertTrue(np.allclose(out1_res1, out2_res1))
self.assertTrue(np.allclose(out1_res2, out2_res2))
self.assertTrue(not np.allclose(out1_res2, out1_res1))
if __name__ == "__main__":
unittest.main()