You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
Paddle/python/paddle/fluid/tests/unittests/test_cumsum_op.py

310 lines
9.3 KiB

# Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
from __future__ import print_function
import unittest
import numpy as np
from op_test import OpTest
import paddle
import paddle.fluid.core as core
import paddle.fluid as fluid
from paddle.fluid import compiler, Program, program_guard
class TestCumsumOp(unittest.TestCase):
def run_cases(self):
data_np = np.arange(12).reshape(3, 4)
data = paddle.to_tensor(data_np)
y = paddle.cumsum(data)
z = np.cumsum(data_np)
self.assertTrue(np.array_equal(z, y.numpy()))
y = paddle.cumsum(data, axis=0)
z = np.cumsum(data_np, axis=0)
self.assertTrue(np.array_equal(z, y.numpy()))
y = paddle.cumsum(data, axis=-1)
z = np.cumsum(data_np, axis=-1)
self.assertTrue(np.array_equal(z, y.numpy()))
y = paddle.cumsum(data, dtype='float64')
self.assertTrue(y.dtype == core.VarDesc.VarType.FP64)
y = paddle.cumsum(data, dtype=np.int32)
self.assertTrue(y.dtype == core.VarDesc.VarType.INT32)
y = paddle.cumsum(data, axis=-2)
z = np.cumsum(data_np, axis=-2)
self.assertTrue(np.array_equal(z, y.numpy()))
def run_static(self, use_gpu=False):
with fluid.program_guard(fluid.Program()):
data_np = np.random.random((100, 100)).astype(np.float32)
x = paddle.static.data('X', [100, 100])
y = paddle.cumsum(x)
y2 = paddle.cumsum(x, axis=0)
y3 = paddle.cumsum(x, axis=-1)
y4 = paddle.cumsum(x, dtype='float64')
y5 = paddle.cumsum(x, dtype=np.int32)
y6 = paddle.cumsum(x, axis=-2)
place = fluid.CUDAPlace(0) if use_gpu else fluid.CPUPlace()
exe = fluid.Executor(place)
exe.run(fluid.default_startup_program())
out = exe.run(feed={'X': data_np},
fetch_list=[
y.name, y2.name, y3.name, y4.name, y5.name,
y6.name
])
z = np.cumsum(data_np)
self.assertTrue(np.allclose(z, out[0]))
z = np.cumsum(data_np, axis=0)
self.assertTrue(np.allclose(z, out[1]))
z = np.cumsum(data_np, axis=-1)
self.assertTrue(np.allclose(z, out[2]))
self.assertTrue(out[3].dtype == np.float64)
self.assertTrue(out[4].dtype == np.int32)
z = np.cumsum(data_np, axis=-2)
self.assertTrue(np.allclose(z, out[5]))
def test_cpu(self):
paddle.disable_static(paddle.fluid.CPUPlace())
self.run_cases()
paddle.enable_static()
self.run_static()
def test_gpu(self):
if not fluid.core.is_compiled_with_cuda():
return
paddle.disable_static(paddle.fluid.CUDAPlace(0))
self.run_cases()
paddle.enable_static()
self.run_static(use_gpu=True)
def test_name(self):
with fluid.program_guard(fluid.Program()):
x = paddle.static.data('x', [3, 4])
y = paddle.cumsum(x, name='out')
self.assertTrue('out' in y.name)
class TestSumOp1(OpTest):
def setUp(self):
self.op_type = "cumsum"
self.attrs = {'axis': 2}
self.inputs = {'X': np.random.random((5, 6, 10)).astype("float64")}
self.outputs = {'Out': self.inputs['X'].cumsum(axis=2)}
def test_check_output(self):
self.check_output()
def test_check_grad(self):
self.check_grad(['X'], 'Out')
class TestSumOp2(OpTest):
def setUp(self):
self.op_type = "cumsum"
self.attrs = {'axis': -1, 'reverse': True}
self.inputs = {'X': np.random.random((5, 6, 10)).astype("float64")}
self.outputs = {
'Out': np.flip(
np.flip(
self.inputs['X'], axis=2).cumsum(axis=2), axis=2)
}
def test_check_output(self):
self.check_output()
def test_check_grad(self):
self.check_grad(['X'], 'Out')
class TestSumOp3(OpTest):
def setUp(self):
self.op_type = "cumsum"
self.attrs = {'axis': 1}
self.inputs = {'X': np.random.random((5, 6, 10)).astype("float64")}
self.outputs = {'Out': self.inputs['X'].cumsum(axis=1)}
def test_check_output(self):
self.check_output()
def test_check_grad(self):
self.check_grad(['X'], 'Out')
class TestSumOp4(OpTest):
def setUp(self):
self.op_type = "cumsum"
self.attrs = {'axis': 0}
self.inputs = {'X': np.random.random((5, 6, 10)).astype("float64")}
self.outputs = {'Out': self.inputs['X'].cumsum(axis=0)}
def test_check_output(self):
self.check_output()
def test_check_grad(self):
self.check_grad(['X'], 'Out')
class TestSumOp5(OpTest):
def setUp(self):
self.op_type = "cumsum"
self.inputs = {'X': np.random.random((5, 20)).astype("float64")}
self.outputs = {'Out': self.inputs['X'].cumsum(axis=1)}
def test_check_output(self):
self.check_output()
def test_check_grad(self):
self.check_grad(['X'], 'Out')
class TestSumOp7(OpTest):
def setUp(self):
self.op_type = "cumsum"
self.inputs = {'X': np.random.random((100)).astype("float64")}
self.outputs = {'Out': self.inputs['X'].cumsum(axis=0)}
def test_check_output(self):
self.check_output()
def test_check_grad(self):
self.check_grad(['X'], 'Out')
class TestSumOpExclusive1(OpTest):
def setUp(self):
self.op_type = "cumsum"
self.attrs = {'axis': 2, "exclusive": True}
a = np.random.random((4, 5, 65)).astype("float64")
self.inputs = {'X': a}
self.outputs = {
'Out': np.concatenate(
(np.zeros(
(4, 5, 1), dtype=np.float64), a[:, :, :-1].cumsum(axis=2)),
axis=2)
}
def test_check_output(self):
self.check_output()
class TestSumOpExclusive2(OpTest):
def setUp(self):
self.op_type = "cumsum"
self.attrs = {'axis': 2, "exclusive": True}
a = np.random.random((1, 1, 888)).astype("float64")
self.inputs = {'X': a}
self.outputs = {
'Out': np.concatenate(
(np.zeros(
(1, 1, 1), dtype=np.float64), a[:, :, :-1].cumsum(axis=2)),
axis=2)
}
def test_check_output(self):
self.check_output()
class TestSumOpExclusive3(OpTest):
def setUp(self):
self.op_type = "cumsum"
self.attrs = {'axis': 2, "exclusive": True}
a = np.random.random((4, 5, 888)).astype("float32")
self.inputs = {'X': a}
self.outputs = {
'Out': np.concatenate(
(np.zeros(
(4, 5, 1), dtype=np.float64), a[:, :, :-1].cumsum(axis=2)),
axis=2)
}
def test_check_output(self):
self.check_output()
class TestSumOpExclusive4(OpTest):
def setUp(self):
self.op_type = "cumsum"
self.attrs = {'axis': 2, "exclusive": True}
a = np.random.random((1, 1, 3049)).astype("float64")
self.inputs = {'X': a}
self.outputs = {
'Out': np.concatenate(
(np.zeros(
(1, 1, 1), dtype=np.float64), a[:, :, :-1].cumsum(axis=2)),
axis=2)
}
def test_check_output(self):
self.check_output()
class TestSumOpExclusive5(OpTest):
def setUp(self):
self.op_type = "cumsum"
self.attrs = {'axis': 2, "exclusive": True}
a = np.random.random((4, 5, 3096)).astype("float64")
self.inputs = {'X': a}
self.outputs = {
'Out': np.concatenate(
(np.zeros(
(4, 5, 1), dtype=np.float64), a[:, :, :-1].cumsum(axis=2)),
axis=2)
}
def test_check_output(self):
self.check_output()
class TestSumOpReverseExclusive(OpTest):
def setUp(self):
self.op_type = "cumsum"
self.attrs = {'axis': 2, 'reverse': True, "exclusive": True}
a = np.random.random((4, 5, 6)).astype("float64")
self.inputs = {'X': a}
a = np.flip(a, axis=2)
self.outputs = {
'Out': np.concatenate(
(np.flip(
a[:, :, :-1].cumsum(axis=2), axis=2), np.zeros(
(4, 5, 1), dtype=np.float64)),
axis=2)
}
def test_check_output(self):
self.check_output()
class BadInputTest(unittest.TestCase):
def test_error(self):
with fluid.program_guard(fluid.Program()):
def test_bad_x():
data = [1, 2, 4]
result = fluid.layers.cumsum(data, axis=0)
self.assertRaises(TypeError, test_bad_x)
if __name__ == '__main__':
unittest.main()