You can not select more than 25 topics
Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
195 lines
7.9 KiB
195 lines
7.9 KiB
# Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved.
|
|
#
|
|
# Licensed under the Apache License, Version 2.0 (the "License");
|
|
# you may not use this file except in compliance with the License.
|
|
# You may obtain a copy of the License at
|
|
#
|
|
# http://www.apache.org/licenses/LICENSE-2.0
|
|
#
|
|
# Unless required by applicable law or agreed to in writing, software
|
|
# distributed under the License is distributed on an "AS IS" BASIS,
|
|
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
# See the License for the specific language governing permissions and
|
|
# limitations under the License.
|
|
|
|
from __future__ import print_function
|
|
|
|
import unittest
|
|
from op_test import OpTest
|
|
|
|
import numpy as np
|
|
import paddle
|
|
import paddle.fluid as fluid
|
|
import paddle.fluid.core as core
|
|
import warnings
|
|
|
|
|
|
def execute(main_program, startup_program):
|
|
if paddle.is_compiled_with_cuda():
|
|
place = paddle.CUDAPlace(0)
|
|
else:
|
|
place = paddle.CPUPlace()
|
|
exe = paddle.static.Executor(place)
|
|
exe.run(startup_program)
|
|
exe.run(main_program)
|
|
|
|
|
|
def get_vaild_warning_num(warning, w):
|
|
num = 0
|
|
for i in range(len(w)):
|
|
if warning in str(w[i].message):
|
|
num += 1
|
|
return num
|
|
|
|
|
|
class TestDeviceGuard(unittest.TestCase):
|
|
def test_device_guard(self):
|
|
main_program = paddle.static.Program()
|
|
startup_program = paddle.static.Program()
|
|
with paddle.static.program_guard(main_program, startup_program):
|
|
data1 = paddle.full(
|
|
shape=[1, 3, 8, 8], fill_value=0.5, dtype='float32')
|
|
data2 = paddle.full(
|
|
shape=[1, 3, 5, 5], fill_value=0.5, dtype='float32')
|
|
shape = paddle.shape(data2)
|
|
with paddle.static.device_guard("cpu"):
|
|
shape = paddle.slice(shape, axes=[0], starts=[0], ends=[4])
|
|
with paddle.static.device_guard("gpu"):
|
|
out = fluid.layers.crop_tensor(data1, shape=shape)
|
|
# check if the device attr is set correctly
|
|
all_ops = main_program.global_block().ops
|
|
device_attr_name = core.op_proto_and_checker_maker.kOpDeviceAttrName()
|
|
for op in all_ops:
|
|
if op.type == 'slice':
|
|
self.assertEqual(op.desc.attr(device_attr_name), "cpu")
|
|
if op.type == 'crop_tensor':
|
|
self.assertEqual(op.desc.attr(device_attr_name), "gpu")
|
|
|
|
execute(main_program, startup_program)
|
|
|
|
def test_device_guard_with_id(self):
|
|
main_program = paddle.static.Program()
|
|
startup_program = paddle.static.Program()
|
|
with paddle.static.program_guard(main_program, startup_program):
|
|
data1 = paddle.full(
|
|
shape=[1, 3, 8, 8], fill_value=0.5, dtype='float32')
|
|
data2 = paddle.full(
|
|
shape=[1, 3, 5, 5], fill_value=0.5, dtype='float32')
|
|
shape = paddle.shape(data2)
|
|
with paddle.static.device_guard("cpu"):
|
|
shape = paddle.slice(shape, axes=[0], starts=[0], ends=[4])
|
|
with paddle.static.device_guard("gpu:1"):
|
|
out = fluid.layers.crop_tensor(data1, shape=shape)
|
|
# check if the device attr is set correctly
|
|
all_ops = main_program.global_block().ops
|
|
device_attr_name = core.op_proto_and_checker_maker.kOpDeviceAttrName()
|
|
for op in all_ops:
|
|
if op.type == 'slice':
|
|
self.assertEqual(op.desc.attr(device_attr_name), "cpu")
|
|
if op.type == 'crop_tensor':
|
|
self.assertEqual(op.desc.attr(device_attr_name), "gpu:1")
|
|
|
|
execute(main_program, startup_program)
|
|
|
|
def test_cpu_only_op(self):
|
|
main_program = paddle.static.Program()
|
|
startup_program = paddle.static.Program()
|
|
with paddle.static.program_guard(main_program, startup_program):
|
|
x = paddle.full(
|
|
shape=[2, 255, 13, 13], fill_value=0.3, dtype='float32')
|
|
gt_box = paddle.full(
|
|
shape=[2, 6, 4], fill_value=0.5, dtype='float32')
|
|
gt_label = paddle.full(shape=[2, 6], fill_value=1.0, dtype='int32')
|
|
gt_score = paddle.full(
|
|
shape=[2, 6], fill_value=0.5, dtype='float32')
|
|
anchors = [
|
|
10, 13, 16, 30, 33, 23, 30, 61, 62, 45, 59, 119, 116, 90, 156,
|
|
198, 373, 326
|
|
]
|
|
anchor_mask = [0, 1, 2]
|
|
with paddle.static.device_guard("gpu"):
|
|
# yolov3_loss only has cpu kernel, so its cpu kernel will be executed
|
|
loss = fluid.layers.yolov3_loss(
|
|
x=x,
|
|
gt_box=gt_box,
|
|
gt_label=gt_label,
|
|
gt_score=gt_score,
|
|
anchors=anchors,
|
|
anchor_mask=anchor_mask,
|
|
class_num=80,
|
|
ignore_thresh=0.7,
|
|
downsample_ratio=32)
|
|
|
|
execute(main_program, startup_program)
|
|
|
|
def test_without_kernel_op(self):
|
|
main_program = paddle.static.Program()
|
|
startup_program = paddle.static.Program()
|
|
with paddle.static.program_guard(main_program, startup_program):
|
|
i = paddle.full(shape=[1], dtype='int64', fill_value=0)
|
|
loop_len = paddle.full(shape=[1], dtype='int64', fill_value=10)
|
|
cond = paddle.less_than(x=i, y=loop_len)
|
|
|
|
with warnings.catch_warnings(record=True) as w:
|
|
warnings.simplefilter("always")
|
|
with paddle.static.device_guard("cpu"):
|
|
while_op = fluid.layers.While(cond=cond)
|
|
with while_op.block():
|
|
i = paddle.increment(x=i, value=1)
|
|
fluid.layers.less_than(x=i, y=loop_len, cond=cond)
|
|
|
|
warning = "The Op(while) is not support to set device."
|
|
warning_num = get_vaild_warning_num(warning, w)
|
|
assert warning_num == 1
|
|
|
|
all_ops = main_program.global_block().ops
|
|
device_attr_name = core.op_proto_and_checker_maker.kOpDeviceAttrName()
|
|
for op in all_ops:
|
|
if op.type == 'while':
|
|
self.assertEqual(op.desc.attr(device_attr_name), "")
|
|
|
|
execute(main_program, startup_program)
|
|
|
|
def test_error(self):
|
|
def device_attr():
|
|
with paddle.static.device_guard("cpu1"):
|
|
out = paddle.full(shape=[1], fill_value=0.2, dtype='float32')
|
|
|
|
def device_attr2():
|
|
with paddle.static.device_guard("cpu:1"):
|
|
out = paddle.full(shape=[1], fill_value=0.2, dtype='float32')
|
|
|
|
self.assertRaises(ValueError, device_attr)
|
|
self.assertRaises(ValueError, device_attr2)
|
|
|
|
# check if op_descs have op_device attr
|
|
def test_op_descs_device_attr(self):
|
|
main_program = paddle.static.Program()
|
|
startup_program = paddle.static.Program()
|
|
with paddle.static.program_guard(main_program, startup_program):
|
|
data1 = paddle.static.data(
|
|
name="data_1", shape=[4, 2], dtype="float32")
|
|
label = paddle.static.data(
|
|
name="label", shape=[4, 1], dtype="int64")
|
|
fc1 = paddle.static.nn.fc(x=data1, size=10)
|
|
fc2 = paddle.static.nn.fc(x=fc1, size=10)
|
|
with paddle.static.device_guard("gpu"):
|
|
out = paddle.nn.functional.softmax_with_cross_entropy(
|
|
logits=fc1 + fc2, label=label)
|
|
loss = paddle.mean(out)
|
|
opt = paddle.optimizer.SGD(0.1)
|
|
opt.minimize(loss)
|
|
|
|
all_ops = main_program.global_block().ops
|
|
device_attr_name = core.op_proto_and_checker_maker.kOpDeviceAttrName()
|
|
for op in all_ops:
|
|
self.assertEqual(True, op.desc.has_attr(device_attr_name))
|
|
# fill_constant(backward op) is append to mean op, which should have
|
|
# the same op_device value as mean op
|
|
if op.desc == 'fill_constant':
|
|
self.assertEqual(op.desc.attr(device_attr_name), "gpu")
|
|
|
|
|
|
if __name__ == '__main__':
|
|
unittest.main()
|