You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
Paddle/python/paddle/fluid/tests/unittests/test_dgc_op.py

160 lines
5.1 KiB

# Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
from __future__ import print_function
import unittest
import numpy as np
import paddle.fluid.core as core
from paddle.fluid.op import Operator
import paddle.fluid as fluid
g_array_size = 102400
class TestDGCOp(unittest.TestCase):
def setup(self, place, array_size=g_array_size):
size = array_size
np.random.seed(5) # fix seed
self.scope = fluid.global_scope()
self.place = place
print("place:", place)
# numpy data
# inputs: U, V, Grad, current_step, nranks
self.u_name = "U"
self.u = np.random.random(size).astype("float32")
self.v_name = "V"
self.v = np.random.random(size).astype("float32")
self.grad_name = "Grad"
self.grad = np.random.random(size).astype("float32")
self.param_name = "Param"
self.param = np.random.random(size).astype("float32")
self.current_step_name = "current_step"
self.current_step = np.full((1), 0.0).astype("float32")
self.nranks_name = "nranks"
self.nranks = np.full((1), 2.0).astype("float32")
# output: U_out, V_out, EncodeGrad, GradLocal_out, k, GatherBuff
self.encode_grad_name = "EncodeGrad"
self.k_name = "k"
self.k = np.full((1), 0.0).astype("float32")
self.gather_buff_name = "GatherBuff"
# scope data
self.u_tensor = self.scope.var(self.u_name).get_tensor()
self.u_tensor.set(self.u, place)
self.v_tensor = self.scope.var(self.v_name).get_tensor()
self.v_tensor.set(self.v, place)
self.grad_tensor = self.scope.var(self.grad_name).get_tensor()
self.grad_tensor.set(self.grad, place)
self.param_tensor = self.scope.var(self.param_name).get_tensor()
self.param_tensor.set(self.param, place)
self.current_step_tensor = self.scope.var(
self.current_step_name).get_tensor()
self.current_step_tensor.set(self.current_step, core.CPUPlace())
self.nranks_tensor = self.scope.var(self.nranks_name).get_tensor()
self.nranks_tensor.set(self.nranks, core.CPUPlace())
self.encode_grad_tensor = self.scope.var(
self.encode_grad_name).get_tensor()
self.k_tensor = self.scope.var(self.k_name).get_tensor()
self.k_tensor.set(self.k, core.CPUPlace())
self.gather_buff_tensor = self.scope.var(
self.gather_buff_name).get_tensor()
def check(self, actual_t, expect_t, place, out_name, atol=1e-5):
self.assertTrue(
np.allclose(
actual_t, expect_t, atol=atol),
"Output (" + out_name + ") has diff at " + str(place) + "\nExpect "
+ str(expect_t) + "\n" + "But Got" + str(actual_t))
def test_run_and_check(self):
self.setup(place=core.CUDAPlace(0))
kwargs = {
# inputs
'U': self.u_name,
'V': self.v_name,
'Grad': self.grad_name,
'Param': self.param_name,
'current_step': self.current_step_name,
'nranks': self.nranks_name,
# outputs
'U_out': self.u_name,
'V_out': self.v_name,
'EncodeGrad': self.encode_grad_name,
'Grad_out': self.grad_name,
'k': self.k_name,
'GatherBuff': self.gather_buff_name,
# attrs
'm': 0.9,
'sparsity': [0.75, 0.9375, 0.984375, 0.996, 0.999],
'use_nesterov': True,
'rampup_begin_step': float(0.0),
'rampup_step': float(10.0),
'regular_coeff': float(1e-4),
'regular_type': int(2),
}
dgc_op = Operator('dgc', **kwargs)
#atol = 1e-6
dgc_op.run(self.scope, self.place)
u_out = np.array(self.u_tensor)
v_out = np.array(self.v_tensor)
grad_out = np.array(self.grad_tensor)
encode_grad_out = np.array(self.encode_grad_tensor)
k = int(np.array(self.k_tensor)[0])
print("u_out:", u_out[0:20])
print("v_out:", v_out[0:20])
print("encode_grad_out:", encode_grad_out)
print("k_out:", k)
self.assertEqual(k, int(g_array_size * 0.25))
index = encode_grad_out[0:k].view(dtype=np.int32)
value = encode_grad_out[k:2 * k]
acl = 1e-7
for i in range(0, k):
self.assertAlmostEqual(u_out[index[i]], 0.0)
self.assertAlmostEqual(v_out[index[i]], 0.0)
a_min = np.amin(value)
dangling = [x for x in v_out if x > a_min]
if __name__ == "__main__":
unittest.main()