You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
Paddle/python/paddle/fluid/tests/unittests/test_diag_embed.py

74 lines
2.6 KiB

# Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
from __future__ import print_function
import unittest
import numpy as np
from op_test import OpTest
import paddle.nn.functional as F
import paddle.fluid as fluid
import paddle.fluid.dygraph as dg
import paddle.fluid.core as core
class TestDiagEmbedOp(OpTest):
def setUp(self):
self.op_type = "diag_embed"
self.init_config()
self.outputs = {'Out': self.target}
def test_check_output(self):
self.check_output()
def init_config(self):
self.case = np.random.randn(2, 3).astype('float32')
self.inputs = {'Input': self.case}
self.attrs = {'offset': 0, 'dim1': -2, 'dim2': -1}
self.target = np.stack([np.diag(r, 0) for r in self.inputs['Input']], 0)
class TestDiagEmbedOpCase1(TestDiagEmbedOp):
def init_config(self):
self.case = np.random.randn(2, 3).astype('float32')
self.inputs = {'Input': self.case}
self.attrs = {'offset': -1, 'dim1': 0, 'dim2': 2}
self.target = np.stack([np.diag(r, -1) for r in self.inputs['Input']],
1)
class TestDiagEmbedAPICase(unittest.TestCase):
def test_case1(self):
diag_embed = np.random.randn(2, 3, 4).astype('float32')
data1 = fluid.data(name='data1', shape=[2, 3, 4], dtype='float32')
out1 = F.diag_embed(data1)
out2 = F.diag_embed(data1, offset=1, dim1=-2, dim2=3)
place = core.CPUPlace()
exe = fluid.Executor(place)
results = exe.run(fluid.default_main_program(),
feed={"data1": diag_embed},
fetch_list=[out1, out2],
return_numpy=True)
target1 = np.stack(
[np.stack([np.diag(s, 0) for s in r], 0) for r in diag_embed], 0)
target2 = np.stack(
[np.stack([np.diag(s, 1) for s in r], 0) for r in diag_embed], 0)
self.assertTrue(np.allclose(results[0], target1))
self.assertTrue(np.allclose(results[1], target2))
if __name__ == "__main__":
unittest.main()