You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
Paddle/python/paddle/fluid/tests/unittests/test_dist_fleet_geo.py

88 lines
2.8 KiB

# Copyright (c) 2019 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
from __future__ import print_function
import os
import unittest
import paddle
import paddle.fluid as fluid
import paddle.distributed.fleet as fleet
import paddle.distributed.fleet.base.role_maker as role_maker
from test_dist_fleet_base import TestFleetBase
from dist_fleet_simnet_bow import train_network
paddle.enable_static()
class TestDistGeoCtr_2x2(TestFleetBase):
def _setup_config(self):
self._mode = "geo"
self._reader = "pyreader"
self._geo_sgd_need_push_nums = 5
def check_with_place(self,
model_file,
delta=1e-3,
check_error_log=False,
need_envs={}):
required_envs = {
"PATH": os.getenv("PATH", ""),
"PYTHONPATH": os.getenv("PYTHONPATH", ""),
"LD_LIBRARY_PATH": os.getenv("LD_LIBRARY_PATH", ""),
"FLAGS_rpc_deadline": "5000", # 5sec to fail fast
"http_proxy": ""
}
required_envs.update(need_envs)
if check_error_log:
required_envs["GLOG_v"] = "4"
required_envs["GLOG_logtostderr"] = "1"
tr0_losses, tr1_losses = self._run_cluster(model_file, required_envs)
def test_dist_train(self):
self.check_with_place(
"dist_fleet_ctr.py", delta=1e-5, check_error_log=True)
class TestGeoSgdTranspiler(unittest.TestCase):
def test_pserver(self):
role = role_maker.UserDefinedRoleMaker(
current_id=0,
role=role_maker.Role.SERVER,
worker_num=2,
server_endpoints=["127.0.0.1:36011", "127.0.0.1:36012"])
fleet.init(role)
batch_size = 128
is_sparse = True
is_distribute = False
strategy = paddle.distributed.fleet.DistributedStrategy()
strategy.a_sync = True
strategy.a_sync_configs = {"k_steps": 100, "launch_barrier": False}
avg_cost, _, _, _ = train_network(batch_size, is_distribute, is_sparse)
optimizer = fluid.optimizer.SGD(0.1)
optimizer = fleet.distributed_optimizer(optimizer, strategy)
optimizer.minimize(avg_cost)
if __name__ == "__main__":
unittest.main()