You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
Paddle/python/paddle/fluid/tests/unittests/test_dygraph_mnist_fp16.py

135 lines
4.1 KiB

# Copyright (c) 2019 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
from __future__ import print_function
import unittest
import numpy as np
import paddle.fluid as fluid
from paddle.fluid.dygraph.nn import Conv2D, Pool2D, Linear
class SimpleImgConvPool(fluid.dygraph.Layer):
def __init__(self,
num_channels,
num_filters,
filter_size,
pool_size,
pool_stride,
pool_padding=0,
pool_type='max',
global_pooling=False,
conv_stride=1,
conv_padding=0,
conv_dilation=1,
conv_groups=1,
act=None,
use_cudnn=False,
dtype='float32',
param_attr=None,
bias_attr=None):
super(SimpleImgConvPool, self).__init__()
self._conv2d = Conv2D(
num_channels=num_channels,
num_filters=num_filters,
filter_size=filter_size,
stride=conv_stride,
padding=conv_padding,
dilation=conv_dilation,
groups=conv_groups,
param_attr=param_attr,
bias_attr=bias_attr,
use_cudnn=use_cudnn,
dtype=dtype,
act=act)
self._pool2d = Pool2D(
pool_size=pool_size,
pool_type=pool_type,
pool_stride=pool_stride,
pool_padding=pool_padding,
global_pooling=global_pooling,
use_cudnn=use_cudnn)
def forward(self, inputs):
x = self._conv2d(inputs)
x = self._pool2d(x)
return x
class MNIST(fluid.dygraph.Layer):
def __init__(self, dtype="float32"):
super(MNIST, self).__init__()
self._simple_img_conv_pool_1 = SimpleImgConvPool(
num_channels=3,
num_filters=20,
filter_size=5,
pool_size=2,
pool_stride=2,
act="relu",
dtype=dtype,
use_cudnn=True)
self._simple_img_conv_pool_2 = SimpleImgConvPool(
num_channels=20,
num_filters=50,
filter_size=5,
pool_size=2,
pool_stride=2,
act="relu",
dtype=dtype,
use_cudnn=True)
self.pool_2_shape = 50 * 53 * 53
SIZE = 10
scale = (2.0 / (self.pool_2_shape**2 * SIZE))**0.5
self._linear = Linear(
self.pool_2_shape,
10,
param_attr=fluid.param_attr.ParamAttr(
initializer=fluid.initializer.NormalInitializer(
loc=0.0, scale=scale)),
act="softmax",
dtype=dtype)
def forward(self, inputs, label):
x = self._simple_img_conv_pool_1(inputs)
x = self._simple_img_conv_pool_2(x)
x = fluid.layers.reshape(x, shape=[-1, self.pool_2_shape])
cost = self._linear(x)
loss = fluid.layers.cross_entropy(cost, label)
avg_loss = fluid.layers.mean(loss)
return avg_loss
class TestMnist(unittest.TestCase):
def test_mnist_fp16(self):
if not fluid.is_compiled_with_cuda():
return
x = np.random.randn(1, 3, 224, 224).astype("float16")
y = np.random.randint(10, size=[1, 1], dtype="int64")
with fluid.dygraph.guard(fluid.CUDAPlace(0)):
model = MNIST(dtype="float16")
x = fluid.dygraph.to_variable(x)
y = fluid.dygraph.to_variable(y)
loss = model(x, y)
print(loss.numpy())
if __name__ == "__main__":
unittest.main()