You can not select more than 25 topics
Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
345 lines
14 KiB
345 lines
14 KiB
# Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
|
|
#
|
|
# Licensed under the Apache License, Version 2.0 (the "License");
|
|
# you may not use this file except in compliance with the License.
|
|
# You may obtain a copy of the License at
|
|
#
|
|
# http://www.apache.org/licenses/LICENSE-2.0
|
|
#
|
|
# Unless required by applicable law or agreed to in writing, software
|
|
# distributed under the License is distributed on an "AS IS" BASIS,
|
|
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
# See the License for the specific language governing permissions and
|
|
# limitations under the License.
|
|
|
|
from __future__ import print_function
|
|
|
|
import paddle.fluid as fluid
|
|
import paddle
|
|
import unittest
|
|
import numpy
|
|
|
|
from paddle.fluid.framework import Program, program_guard
|
|
from paddle.fluid.layers.control_flow import lod_rank_table
|
|
from paddle.fluid.layers.control_flow import max_sequence_len
|
|
from paddle.fluid.layers.control_flow import lod_tensor_to_array
|
|
from paddle.fluid.layers.control_flow import array_to_lod_tensor
|
|
from paddle.fluid.layers.control_flow import shrink_memory
|
|
from fake_reader import fake_imdb_reader
|
|
|
|
numpy.random.seed(2020)
|
|
|
|
|
|
class TestDynamicRNN(unittest.TestCase):
|
|
def setUp(self):
|
|
self.word_dict_len = 5147
|
|
self.BATCH_SIZE = 2
|
|
reader = fake_imdb_reader(self.word_dict_len, self.BATCH_SIZE * 100)
|
|
self.train_data = paddle.batch(reader, batch_size=self.BATCH_SIZE)
|
|
|
|
def _train(self,
|
|
main_program,
|
|
startup_program,
|
|
feed_list,
|
|
fetch_list,
|
|
is_nested=False,
|
|
max_iters=1):
|
|
place = fluid.CPUPlace()
|
|
exe = fluid.Executor(place)
|
|
exe.run(startup_program)
|
|
feeder = fluid.DataFeeder(feed_list=feed_list, place=place)
|
|
data = next(self.train_data())
|
|
|
|
for iter_id in range(max_iters):
|
|
fetch_outs = exe.run(main_program,
|
|
feed=feeder.feed(data),
|
|
fetch_list=fetch_list,
|
|
return_numpy=False)
|
|
if len(fetch_list) == 3:
|
|
rnn_in_seq = fetch_outs[0]
|
|
rnn_out_seq = fetch_outs[1]
|
|
if not is_nested:
|
|
# Check for lod set in runtime. When lod_level is 1,
|
|
# the lod of DynamicRNN's output should be the same as input.
|
|
self.assertEqual(rnn_in_seq.lod(), rnn_out_seq.lod())
|
|
|
|
loss_i = numpy.array(fetch_outs[2])
|
|
elif len(fetch_list) == 1:
|
|
loss_i = numpy.array(fetch_outs[0])
|
|
#print(loss_i)
|
|
|
|
self.assertEqual((1, ), loss_i.shape)
|
|
self.assertFalse(numpy.isnan(loss_i))
|
|
if iter_id == 0:
|
|
loss_0 = loss_i
|
|
|
|
if max_iters > 10:
|
|
# loss should be small after 10 mini-batch
|
|
self.assertLess(loss_i[0], loss_0[0])
|
|
|
|
def test_plain_while_op(self):
|
|
main_program = fluid.Program()
|
|
startup_program = fluid.Program()
|
|
|
|
with fluid.program_guard(main_program, startup_program):
|
|
sentence = fluid.layers.data(
|
|
name='word', shape=[1], dtype='int64', lod_level=1)
|
|
sent_emb = fluid.layers.embedding(
|
|
input=sentence, size=[self.word_dict_len, 32], dtype='float32')
|
|
|
|
rank_table = lod_rank_table(x=sent_emb)
|
|
sent_emb_array = lod_tensor_to_array(x=sent_emb, table=rank_table)
|
|
|
|
seq_len = max_sequence_len(rank_table=rank_table)
|
|
i = fluid.layers.fill_constant(shape=[1], dtype='int64', value=0)
|
|
i.stop_gradient = False
|
|
|
|
boot_mem = fluid.layers.fill_constant_batch_size_like(
|
|
input=fluid.layers.array_read(
|
|
array=sent_emb_array, i=i),
|
|
value=0,
|
|
shape=[-1, 100],
|
|
dtype='float32')
|
|
boot_mem.stop_gradient = False
|
|
mem_array = fluid.layers.array_write(x=boot_mem, i=i)
|
|
|
|
cond = fluid.layers.less_than(x=i, y=seq_len)
|
|
cond.stop_gradient = False
|
|
while_op = fluid.layers.While(cond=cond)
|
|
out = fluid.layers.create_array(dtype='float32')
|
|
|
|
with while_op.block():
|
|
mem = fluid.layers.array_read(array=mem_array, i=i)
|
|
ipt = fluid.layers.array_read(array=sent_emb_array, i=i)
|
|
|
|
mem = shrink_memory(x=mem, i=i, table=rank_table)
|
|
|
|
hidden = fluid.layers.fc(input=[mem, ipt], size=100, act='tanh')
|
|
|
|
fluid.layers.array_write(x=hidden, i=i, array=out)
|
|
fluid.layers.increment(x=i, in_place=True)
|
|
fluid.layers.array_write(x=hidden, i=i, array=mem_array)
|
|
fluid.layers.less_than(x=i, y=seq_len, cond=cond)
|
|
|
|
result_all_timesteps = array_to_lod_tensor(x=out, table=rank_table)
|
|
last = fluid.layers.sequence_last_step(input=result_all_timesteps)
|
|
|
|
logits = fluid.layers.fc(input=last, size=1, act=None)
|
|
label = fluid.layers.data(name='label', shape=[1], dtype='float32')
|
|
loss = fluid.layers.sigmoid_cross_entropy_with_logits(
|
|
x=logits, label=label)
|
|
loss = fluid.layers.mean(loss)
|
|
sgd = fluid.optimizer.SGD(1e-4)
|
|
sgd.minimize(loss=loss)
|
|
|
|
# Check for lod_level set in compile-time.
|
|
self.assertEqual(sent_emb.lod_level, result_all_timesteps.lod_level)
|
|
|
|
self._train(
|
|
main_program=main_program,
|
|
startup_program=startup_program,
|
|
feed_list=[sentence, label],
|
|
fetch_list=[sent_emb, result_all_timesteps, loss],
|
|
is_nested=False,
|
|
max_iters=1)
|
|
|
|
def test_train_dynamic_rnn(self):
|
|
main_program = fluid.Program()
|
|
startup_program = fluid.Program()
|
|
main_program.random_seed = 10
|
|
startup_program.random_seed = 10
|
|
with fluid.program_guard(main_program, startup_program):
|
|
sentence = fluid.layers.data(
|
|
name='word', shape=[1], dtype='int64', lod_level=1)
|
|
sent_emb = fluid.layers.embedding(
|
|
input=sentence, size=[self.word_dict_len, 32], dtype='float32')
|
|
|
|
drnn = fluid.layers.DynamicRNN()
|
|
with drnn.block():
|
|
in_ = drnn.step_input(sent_emb)
|
|
mem = drnn.memory(shape=[100], dtype='float32')
|
|
out_ = fluid.layers.fc(input=[in_, mem], size=100, act='tanh')
|
|
drnn.update_memory(mem, out_)
|
|
drnn.output(out_)
|
|
|
|
drnn_result = drnn()
|
|
last = fluid.layers.sequence_last_step(input=drnn_result)
|
|
logits = fluid.layers.fc(input=last, size=1, act=None)
|
|
|
|
label = fluid.layers.data(name='label', shape=[1], dtype='float32')
|
|
loss = fluid.layers.sigmoid_cross_entropy_with_logits(
|
|
x=logits, label=label)
|
|
loss = fluid.layers.mean(loss)
|
|
sgd = fluid.optimizer.Adam(1e-3)
|
|
sgd.minimize(loss=loss)
|
|
|
|
# Check for lod_level set in compile-time.
|
|
self.assertEqual(sent_emb.lod_level, drnn_result.lod_level)
|
|
|
|
self._train(
|
|
main_program=main_program,
|
|
startup_program=startup_program,
|
|
feed_list=[sentence, label],
|
|
fetch_list=[sent_emb, drnn_result, loss],
|
|
is_nested=False,
|
|
max_iters=100)
|
|
|
|
def _fake_reader(self):
|
|
seq_len, label = [[2, 2]], [0, 1]
|
|
data = []
|
|
for ele in seq_len:
|
|
for j in ele:
|
|
data.append([numpy.random.randint(30) for _ in range(j)])
|
|
|
|
while True:
|
|
yield data, label
|
|
|
|
# this unit test is just used to the two layer nested dyn_rnn.
|
|
def test_train_nested_dynamic_rnn(self):
|
|
word_dict = [i for i in range(30)]
|
|
|
|
main_program = fluid.Program()
|
|
startup_program = fluid.Program()
|
|
main_program.random_seed = 10
|
|
startup_program.random_seed = 10
|
|
with fluid.program_guard(main_program, startup_program):
|
|
sentence = fluid.layers.data(
|
|
name='word', shape=[1], dtype='int64', lod_level=2)
|
|
label = fluid.layers.data(
|
|
name='label', shape=[1], dtype='float32', lod_level=1)
|
|
|
|
drnn0 = fluid.layers.DynamicRNN()
|
|
with drnn0.block():
|
|
in_0 = drnn0.step_input(sentence)
|
|
assert in_0.lod_level == 1, "the lod level of in_ should be 1"
|
|
sentence_emb = fluid.layers.embedding(
|
|
input=in_0, size=[len(word_dict), 32], dtype='float32')
|
|
out_0 = fluid.layers.fc(input=sentence_emb,
|
|
size=100,
|
|
act='tanh')
|
|
|
|
drnn1 = fluid.layers.DynamicRNN()
|
|
with drnn1.block():
|
|
in_1 = drnn1.step_input(out_0)
|
|
assert in_1.lod_level == 0, "the lod level of in_1 should be 0"
|
|
out_1 = fluid.layers.fc(input=[in_1], size=100, act='tanh')
|
|
drnn1.output(out_1)
|
|
|
|
drnn1_result = drnn1()
|
|
last_1 = fluid.layers.sequence_last_step(input=drnn1_result)
|
|
drnn0.output(last_1)
|
|
|
|
last = drnn0()
|
|
logits = fluid.layers.fc(input=last, size=1, act=None)
|
|
loss = fluid.layers.sigmoid_cross_entropy_with_logits(
|
|
x=logits, label=label)
|
|
loss = fluid.layers.mean(loss)
|
|
sgd = fluid.optimizer.SGD(1e-3)
|
|
sgd.minimize(loss=loss)
|
|
|
|
train_data_orig = self.train_data
|
|
self.train_data = paddle.batch(self._fake_reader, batch_size=2)
|
|
self._train(
|
|
main_program=main_program,
|
|
startup_program=startup_program,
|
|
feed_list=[sentence, label],
|
|
fetch_list=[loss],
|
|
is_nested=True,
|
|
max_iters=100)
|
|
self.train_data = train_data_orig
|
|
|
|
# this unit test is just used to the two layer nested dyn_rnn.
|
|
def test_train_nested_dynamic_rnn2(self):
|
|
word_dict = [i for i in range(30)]
|
|
|
|
hidden_size = 32
|
|
main_program = fluid.Program()
|
|
startup_program = fluid.Program()
|
|
main_program.random_seed = 10
|
|
startup_program.random_seed = 10
|
|
with fluid.program_guard(main_program, startup_program):
|
|
sentence = fluid.layers.data(
|
|
name='word', shape=[1], dtype='int64', lod_level=2)
|
|
label = fluid.layers.data(
|
|
name='label', shape=[1], dtype='float32', lod_level=1)
|
|
|
|
drnn0 = fluid.layers.DynamicRNN()
|
|
with drnn0.block():
|
|
in_0 = drnn0.step_input(sentence)
|
|
sentence_emb = fluid.layers.embedding(
|
|
input=in_0,
|
|
size=[len(word_dict), hidden_size],
|
|
dtype='float32')
|
|
input_forward_proj = fluid.layers.fc(input=sentence_emb,
|
|
size=hidden_size * 4,
|
|
act=None,
|
|
bias_attr=False)
|
|
forward, _ = fluid.layers.dynamic_lstm(
|
|
input=input_forward_proj,
|
|
size=hidden_size * 4,
|
|
use_peepholes=False)
|
|
|
|
drnn1 = fluid.layers.DynamicRNN()
|
|
with drnn1.block():
|
|
in_1 = drnn1.step_input(forward)
|
|
out_1 = fluid.layers.fc(input=[in_1], size=100, act='tanh')
|
|
drnn1.output(out_1)
|
|
|
|
last = fluid.layers.sequence_last_step(input=drnn1())
|
|
drnn0.output(last)
|
|
|
|
last = drnn0()
|
|
logits = fluid.layers.fc(input=last, size=1, act=None)
|
|
loss = fluid.layers.sigmoid_cross_entropy_with_logits(
|
|
x=logits, label=label)
|
|
loss = fluid.layers.mean(loss)
|
|
sgd = fluid.optimizer.SGD(1e-3)
|
|
sgd.minimize(loss=loss)
|
|
|
|
train_data_orig = self.train_data
|
|
self.train_data = paddle.batch(self._fake_reader, batch_size=2)
|
|
self._train(
|
|
main_program=main_program,
|
|
startup_program=startup_program,
|
|
feed_list=[sentence, label],
|
|
fetch_list=[loss],
|
|
is_nested=True,
|
|
max_iters=100)
|
|
self.train_data = train_data_orig
|
|
|
|
|
|
class TestDynamicRNNErrors(unittest.TestCase):
|
|
def test_errors(self):
|
|
with program_guard(Program(), Program()):
|
|
init = fluid.layers.zeros(shape=[1], dtype='float32')
|
|
shape = 'shape'
|
|
sentence = fluid.data(
|
|
name='sentence', shape=[None, 32], dtype='float32', lod_level=1)
|
|
|
|
# The type of Input(shape) in API(memory) must be list or tuple
|
|
def input_shape_type_of_memory():
|
|
drnn = fluid.layers.DynamicRNN()
|
|
with drnn.block():
|
|
res = drnn.memory(init, shape)
|
|
|
|
self.assertRaises(TypeError, input_shape_type_of_memory)
|
|
|
|
# The type of element of Input(*outputs) in API(output) must be Variable.
|
|
def outputs_type_of_output():
|
|
drnn = fluid.layers.DynamicRNN()
|
|
with drnn.block():
|
|
word = drnn.step_input(sentence)
|
|
memory = drnn.memory(shape=[10], dtype='float32', value=0)
|
|
hidden = fluid.layers.fc(input=[word, memory],
|
|
size=10,
|
|
act='tanh')
|
|
out = np.ones(1).astype('float32')
|
|
drnn.update_memory(ex_mem=memory, new_mem=hidden)
|
|
drnn.output(hidden, out)
|
|
|
|
self.assertRaises(TypeError, outputs_type_of_output)
|
|
|
|
|
|
if __name__ == '__main__':
|
|
unittest.main()
|