You can not select more than 25 topics
Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
147 lines
5.3 KiB
147 lines
5.3 KiB
# Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
|
|
#
|
|
# Licensed under the Apache License, Version 2.0 (the "License");
|
|
# you may not use this file except in compliance with the License.
|
|
# You may obtain a copy of the License at
|
|
#
|
|
# http://www.apache.org/licenses/LICENSE-2.0
|
|
#
|
|
# Unless required by applicable law or agreed to in writing, software
|
|
# distributed under the License is distributed on an "AS IS" BASIS,
|
|
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
# See the License for the specific language governing permissions and
|
|
# limitations under the License.
|
|
|
|
from __future__ import print_function
|
|
|
|
import unittest
|
|
import numpy as np
|
|
from op_test import OpTest, skip_check_grad_ci
|
|
|
|
|
|
class TestElementwiseOp(OpTest):
|
|
def setUp(self):
|
|
self.op_type = "elementwise_min"
|
|
# If x and y have the same value, the min() is not differentiable.
|
|
# So we generate test data by the following method
|
|
# to avoid them being too close to each other.
|
|
x = np.random.uniform(0.1, 1, [13, 17]).astype("float64")
|
|
sgn = np.random.choice([-1, 1], [13, 17]).astype("float64")
|
|
y = x + sgn * np.random.uniform(0.1, 1, [13, 17]).astype("float64")
|
|
self.inputs = {'X': x, 'Y': y}
|
|
self.outputs = {'Out': np.minimum(self.inputs['X'], self.inputs['Y'])}
|
|
|
|
def test_check_output(self):
|
|
self.check_output()
|
|
|
|
def test_check_grad_normal(self):
|
|
self.check_grad(['X', 'Y'], 'Out')
|
|
|
|
def test_check_grad_ingore_x(self):
|
|
self.check_grad(
|
|
['Y'], 'Out', max_relative_error=0.005, no_grad_set=set("X"))
|
|
|
|
def test_check_grad_ingore_y(self):
|
|
self.check_grad(
|
|
['X'], 'Out', max_relative_error=0.005, no_grad_set=set('Y'))
|
|
|
|
|
|
@skip_check_grad_ci(
|
|
reason="[skip shape check] Use y_shape(1) to test broadcast.")
|
|
class TestElementwiseMinOp_scalar(TestElementwiseOp):
|
|
def setUp(self):
|
|
self.op_type = "elementwise_min"
|
|
x = np.random.random_integers(-5, 5, [10, 3, 4]).astype("float64")
|
|
y = np.array([0.5]).astype("float64")
|
|
self.inputs = {'X': x, 'Y': y}
|
|
self.outputs = {'Out': np.minimum(self.inputs['X'], self.inputs['Y'])}
|
|
|
|
|
|
class TestElementwiseMinOp_Vector(TestElementwiseOp):
|
|
def setUp(self):
|
|
self.op_type = "elementwise_min"
|
|
x = np.random.random((100, )).astype("float64")
|
|
sgn = np.random.choice([-1, 1], (100, )).astype("float64")
|
|
y = x + sgn * np.random.uniform(0.1, 1, (100, )).astype("float64")
|
|
self.inputs = {'X': x, 'Y': y}
|
|
self.outputs = {'Out': np.minimum(self.inputs['X'], self.inputs['Y'])}
|
|
|
|
|
|
class TestElementwiseMinOp_broadcast_0(TestElementwiseOp):
|
|
def setUp(self):
|
|
self.op_type = "elementwise_min"
|
|
x = np.random.uniform(0.5, 1, (100, 3, 2)).astype(np.float64)
|
|
sgn = np.random.choice([-1, 1], (100, )).astype(np.float64)
|
|
y = x[:, 0, 0] + sgn * \
|
|
np.random.uniform(1, 2, (100, )).astype(np.float64)
|
|
self.inputs = {'X': x, 'Y': y}
|
|
|
|
self.attrs = {'axis': 0}
|
|
self.outputs = {
|
|
'Out':
|
|
np.minimum(self.inputs['X'], self.inputs['Y'].reshape(100, 1, 1))
|
|
}
|
|
|
|
|
|
class TestElementwiseMinOp_broadcast_1(TestElementwiseOp):
|
|
def setUp(self):
|
|
self.op_type = "elementwise_min"
|
|
x = np.random.uniform(0.5, 1, (2, 100, 3)).astype(np.float64)
|
|
sgn = np.random.choice([-1, 1], (100, )).astype(np.float64)
|
|
y = x[0, :, 0] + sgn * \
|
|
np.random.uniform(1, 2, (100, )).astype(np.float64)
|
|
self.inputs = {'X': x, 'Y': y}
|
|
|
|
self.attrs = {'axis': 1}
|
|
self.outputs = {
|
|
'Out':
|
|
np.minimum(self.inputs['X'], self.inputs['Y'].reshape(1, 100, 1))
|
|
}
|
|
|
|
|
|
class TestElementwiseMinOp_broadcast_2(TestElementwiseOp):
|
|
def setUp(self):
|
|
self.op_type = "elementwise_min"
|
|
x = np.random.uniform(0.5, 1, (2, 3, 100)).astype(np.float64)
|
|
sgn = np.random.choice([-1, 1], (100, )).astype(np.float64)
|
|
y = x[0, 0, :] + sgn * \
|
|
np.random.uniform(1, 2, (100, )).astype(np.float64)
|
|
self.inputs = {'X': x, 'Y': y}
|
|
|
|
self.outputs = {
|
|
'Out':
|
|
np.minimum(self.inputs['X'], self.inputs['Y'].reshape(1, 1, 100))
|
|
}
|
|
|
|
|
|
class TestElementwiseMinOp_broadcast_3(TestElementwiseOp):
|
|
def setUp(self):
|
|
self.op_type = "elementwise_min"
|
|
x = np.random.uniform(0.5, 1, (2, 25, 4, 1)).astype(np.float64)
|
|
sgn = np.random.choice([-1, 1], (25, 4)).astype(np.float64)
|
|
y = x[0, :, :, 0] + sgn * \
|
|
np.random.uniform(1, 2, (25, 4)).astype(np.float64)
|
|
self.inputs = {'X': x, 'Y': y}
|
|
|
|
self.attrs = {'axis': 1}
|
|
self.outputs = {
|
|
'Out':
|
|
np.minimum(self.inputs['X'], self.inputs['Y'].reshape(1, 25, 4, 1))
|
|
}
|
|
|
|
|
|
class TestElementwiseMinOp_broadcast_4(TestElementwiseOp):
|
|
def setUp(self):
|
|
self.op_type = "elementwise_min"
|
|
x = np.random.uniform(0.5, 1, (2, 10, 2, 5)).astype(np.float64)
|
|
sgn = np.random.choice([-1, 1], (2, 10, 1, 5)).astype(np.float64)
|
|
y = x + sgn * \
|
|
np.random.uniform(1, 2, (2, 10, 1, 5)).astype(np.float64)
|
|
self.inputs = {'X': x, 'Y': y}
|
|
|
|
self.outputs = {'Out': np.minimum(self.inputs['X'], self.inputs['Y'])}
|
|
|
|
|
|
if __name__ == '__main__':
|
|
unittest.main()
|