You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
Paddle/python/paddle/fluid/tests/unittests/test_elementwise_pow_op.py

186 lines
6.7 KiB

# Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
from __future__ import print_function
import unittest
import numpy as np
from op_test import OpTest, skip_check_grad_ci
import paddle.fluid as fluid
class TestElementwisePowOp(OpTest):
def setUp(self):
self.op_type = "elementwise_pow"
self.inputs = {
'X': np.random.uniform(1, 2, [20, 5]).astype("float64"),
'Y': np.random.uniform(1, 2, [20, 5]).astype("float64")
}
self.outputs = {'Out': np.power(self.inputs['X'], self.inputs['Y'])}
def test_check_output(self):
self.check_output()
def test_check_grad_normal(self):
self.check_grad(['X', 'Y'], 'Out')
class TestElementwisePowOp_big_shape_1(TestElementwisePowOp):
def setUp(self):
self.op_type = "elementwise_pow"
self.inputs = {
'X': np.random.uniform(1, 2, [10, 10]).astype("float64"),
'Y': np.random.uniform(0.1, 1, [10, 10]).astype("float64")
}
self.outputs = {'Out': np.power(self.inputs['X'], self.inputs['Y'])}
class TestElementwisePowOp_big_shape_2(TestElementwisePowOp):
def setUp(self):
self.op_type = "elementwise_pow"
self.inputs = {
'X': np.random.uniform(1, 2, [10, 10]).astype("float64"),
'Y': np.random.uniform(0.2, 2, [10, 10]).astype("float64")
}
self.outputs = {'Out': np.power(self.inputs['X'], self.inputs['Y'])}
@skip_check_grad_ci(
reason="[skip shape check] Use y_shape(1) to test broadcast.")
class TestElementwisePowOp_scalar(TestElementwisePowOp):
def setUp(self):
self.op_type = "elementwise_pow"
self.inputs = {
'X': np.random.uniform(0.1, 1, [3, 3, 4]).astype(np.float64),
'Y': np.random.uniform(0.1, 1, [1]).astype(np.float64)
}
self.outputs = {'Out': np.power(self.inputs['X'], self.inputs['Y'])}
class TestElementwisePowOp_tensor(TestElementwisePowOp):
def setUp(self):
self.op_type = "elementwise_pow"
self.inputs = {
'X': np.random.uniform(0.1, 1, [100]).astype("float64"),
'Y': np.random.uniform(1, 3, [100]).astype("float64")
}
self.outputs = {'Out': np.power(self.inputs['X'], self.inputs['Y'])}
class TestElementwisePowOp_broadcast_0(TestElementwisePowOp):
def setUp(self):
self.op_type = "elementwise_pow"
self.inputs = {
'X': np.random.uniform(0.1, 1, [2, 1, 100]).astype("float64"),
'Y': np.random.uniform(0.1, 1, [100]).astype("float64")
}
self.outputs = {'Out': np.power(self.inputs['X'], self.inputs['Y'])}
class TestElementwisePowOp_broadcast_1(TestElementwisePowOp):
def setUp(self):
self.op_type = "elementwise_pow"
self.inputs = {
'X': np.random.uniform(0.1, 1, [2, 100, 1]).astype("float64"),
'Y': np.random.uniform(0.1, 1, [100]).astype("float64")
}
self.attrs = {'axis': 1}
self.outputs = {
'Out': np.power(self.inputs['X'], self.inputs['Y'].reshape(100, 1))
}
class TestElementwisePowOp_broadcast_2(TestElementwisePowOp):
def setUp(self):
self.op_type = "elementwise_pow"
self.inputs = {
'X': np.random.uniform(0.1, 1, [100, 3, 1]).astype("float64"),
'Y': np.random.uniform(0.1, 1, [100]).astype("float64")
}
self.attrs = {'axis': 0}
self.outputs = {
'Out':
np.power(self.inputs['X'], self.inputs['Y'].reshape(100, 1, 1))
}
class TestElementwisePowOp_broadcast_3(TestElementwisePowOp):
def setUp(self):
self.op_type = "elementwise_pow"
self.inputs = {
'X': np.random.uniform(0.1, 1, [2, 20, 5, 1]).astype("float64"),
'Y': np.random.uniform(0.1, 1, [20, 5]).astype("float64")
}
self.attrs = {'axis': 1}
self.outputs = {
'Out': np.power(self.inputs['X'], self.inputs['Y'].reshape(1, 20, 5,
1))
}
class TestElementwisePowOp_broadcast_4(TestElementwisePowOp):
def setUp(self):
self.op_type = "elementwise_pow"
self.inputs = {
'X': np.random.uniform(0.1, 1, [2, 10, 3, 5]).astype("float64"),
'Y': np.random.uniform(0.1, 1, [2, 10, 1, 5]).astype("float64")
}
self.outputs = {'Out': np.power(self.inputs['X'], self.inputs['Y'])}
class TestElementwisePowOpInt(OpTest):
def setUp(self):
self.op_type = "elementwise_pow"
self.inputs = {'X': np.asarray([1, 3, 6]), 'Y': np.asarray([1, 1, 1])}
self.outputs = {'Out': np.power(self.inputs['X'], self.inputs['Y'])}
def test_check_output(self):
self.check_output()
class TestElementwisePowGradOpInt(unittest.TestCase):
def setUp(self):
self.x = np.asarray([1, 3, 6])
self.y = np.asarray([1, 1, 1])
self.res = self.x**self.y
# dout = 1
self.grad_res = np.asarray([1, 1, 1])
# dx = dout * y * pow(x, y-1)
self.grad_x = self.grad_res * self.y * (self.x
**(self.y - 1)).astype("int")
# dy = dout * log(x) * pow(x, y)
self.grad_y = (self.grad_res * np.log(self.x) *
(self.x**self.y)).astype("int")
print(self.grad_res, self.grad_x, self.grad_y)
def test_grad(self):
places = [fluid.CPUPlace()]
if fluid.is_compiled_with_cuda():
places.append(fluid.CUDAPlace(0))
for place in places:
with fluid.dygraph.guard(place):
x = fluid.dygraph.to_variable(self.x, zero_copy=False)
y = fluid.dygraph.to_variable(self.y, zero_copy=False)
print(x, y)
x.stop_gradient = False
y.stop_gradient = False
res = x**y
res.backward()
self.assertTrue(np.array_equal(res.gradient(), self.grad_res))
self.assertTrue(np.array_equal(x.gradient(), self.grad_x))
self.assertTrue(np.array_equal(y.gradient(), self.grad_y))
if __name__ == '__main__':
unittest.main()