You can not select more than 25 topics
Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
186 lines
6.7 KiB
186 lines
6.7 KiB
# Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
|
|
#
|
|
# Licensed under the Apache License, Version 2.0 (the "License");
|
|
# you may not use this file except in compliance with the License.
|
|
# You may obtain a copy of the License at
|
|
#
|
|
# http://www.apache.org/licenses/LICENSE-2.0
|
|
#
|
|
# Unless required by applicable law or agreed to in writing, software
|
|
# distributed under the License is distributed on an "AS IS" BASIS,
|
|
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
# See the License for the specific language governing permissions and
|
|
# limitations under the License.
|
|
|
|
from __future__ import print_function
|
|
import unittest
|
|
import numpy as np
|
|
from op_test import OpTest, skip_check_grad_ci
|
|
import paddle.fluid as fluid
|
|
|
|
|
|
class TestElementwisePowOp(OpTest):
|
|
def setUp(self):
|
|
self.op_type = "elementwise_pow"
|
|
self.inputs = {
|
|
'X': np.random.uniform(1, 2, [20, 5]).astype("float64"),
|
|
'Y': np.random.uniform(1, 2, [20, 5]).astype("float64")
|
|
}
|
|
self.outputs = {'Out': np.power(self.inputs['X'], self.inputs['Y'])}
|
|
|
|
def test_check_output(self):
|
|
self.check_output()
|
|
|
|
def test_check_grad_normal(self):
|
|
self.check_grad(['X', 'Y'], 'Out')
|
|
|
|
|
|
class TestElementwisePowOp_big_shape_1(TestElementwisePowOp):
|
|
def setUp(self):
|
|
self.op_type = "elementwise_pow"
|
|
self.inputs = {
|
|
'X': np.random.uniform(1, 2, [10, 10]).astype("float64"),
|
|
'Y': np.random.uniform(0.1, 1, [10, 10]).astype("float64")
|
|
}
|
|
self.outputs = {'Out': np.power(self.inputs['X'], self.inputs['Y'])}
|
|
|
|
|
|
class TestElementwisePowOp_big_shape_2(TestElementwisePowOp):
|
|
def setUp(self):
|
|
self.op_type = "elementwise_pow"
|
|
self.inputs = {
|
|
'X': np.random.uniform(1, 2, [10, 10]).astype("float64"),
|
|
'Y': np.random.uniform(0.2, 2, [10, 10]).astype("float64")
|
|
}
|
|
self.outputs = {'Out': np.power(self.inputs['X'], self.inputs['Y'])}
|
|
|
|
|
|
@skip_check_grad_ci(
|
|
reason="[skip shape check] Use y_shape(1) to test broadcast.")
|
|
class TestElementwisePowOp_scalar(TestElementwisePowOp):
|
|
def setUp(self):
|
|
self.op_type = "elementwise_pow"
|
|
self.inputs = {
|
|
'X': np.random.uniform(0.1, 1, [3, 3, 4]).astype(np.float64),
|
|
'Y': np.random.uniform(0.1, 1, [1]).astype(np.float64)
|
|
}
|
|
self.outputs = {'Out': np.power(self.inputs['X'], self.inputs['Y'])}
|
|
|
|
|
|
class TestElementwisePowOp_tensor(TestElementwisePowOp):
|
|
def setUp(self):
|
|
self.op_type = "elementwise_pow"
|
|
self.inputs = {
|
|
'X': np.random.uniform(0.1, 1, [100]).astype("float64"),
|
|
'Y': np.random.uniform(1, 3, [100]).astype("float64")
|
|
}
|
|
self.outputs = {'Out': np.power(self.inputs['X'], self.inputs['Y'])}
|
|
|
|
|
|
class TestElementwisePowOp_broadcast_0(TestElementwisePowOp):
|
|
def setUp(self):
|
|
self.op_type = "elementwise_pow"
|
|
self.inputs = {
|
|
'X': np.random.uniform(0.1, 1, [2, 1, 100]).astype("float64"),
|
|
'Y': np.random.uniform(0.1, 1, [100]).astype("float64")
|
|
}
|
|
self.outputs = {'Out': np.power(self.inputs['X'], self.inputs['Y'])}
|
|
|
|
|
|
class TestElementwisePowOp_broadcast_1(TestElementwisePowOp):
|
|
def setUp(self):
|
|
self.op_type = "elementwise_pow"
|
|
self.inputs = {
|
|
'X': np.random.uniform(0.1, 1, [2, 100, 1]).astype("float64"),
|
|
'Y': np.random.uniform(0.1, 1, [100]).astype("float64")
|
|
}
|
|
self.attrs = {'axis': 1}
|
|
self.outputs = {
|
|
'Out': np.power(self.inputs['X'], self.inputs['Y'].reshape(100, 1))
|
|
}
|
|
|
|
|
|
class TestElementwisePowOp_broadcast_2(TestElementwisePowOp):
|
|
def setUp(self):
|
|
self.op_type = "elementwise_pow"
|
|
self.inputs = {
|
|
'X': np.random.uniform(0.1, 1, [100, 3, 1]).astype("float64"),
|
|
'Y': np.random.uniform(0.1, 1, [100]).astype("float64")
|
|
}
|
|
self.attrs = {'axis': 0}
|
|
self.outputs = {
|
|
'Out':
|
|
np.power(self.inputs['X'], self.inputs['Y'].reshape(100, 1, 1))
|
|
}
|
|
|
|
|
|
class TestElementwisePowOp_broadcast_3(TestElementwisePowOp):
|
|
def setUp(self):
|
|
self.op_type = "elementwise_pow"
|
|
self.inputs = {
|
|
'X': np.random.uniform(0.1, 1, [2, 20, 5, 1]).astype("float64"),
|
|
'Y': np.random.uniform(0.1, 1, [20, 5]).astype("float64")
|
|
}
|
|
self.attrs = {'axis': 1}
|
|
self.outputs = {
|
|
'Out': np.power(self.inputs['X'], self.inputs['Y'].reshape(1, 20, 5,
|
|
1))
|
|
}
|
|
|
|
|
|
class TestElementwisePowOp_broadcast_4(TestElementwisePowOp):
|
|
def setUp(self):
|
|
self.op_type = "elementwise_pow"
|
|
self.inputs = {
|
|
'X': np.random.uniform(0.1, 1, [2, 10, 3, 5]).astype("float64"),
|
|
'Y': np.random.uniform(0.1, 1, [2, 10, 1, 5]).astype("float64")
|
|
}
|
|
self.outputs = {'Out': np.power(self.inputs['X'], self.inputs['Y'])}
|
|
|
|
|
|
class TestElementwisePowOpInt(OpTest):
|
|
def setUp(self):
|
|
self.op_type = "elementwise_pow"
|
|
self.inputs = {'X': np.asarray([1, 3, 6]), 'Y': np.asarray([1, 1, 1])}
|
|
self.outputs = {'Out': np.power(self.inputs['X'], self.inputs['Y'])}
|
|
|
|
def test_check_output(self):
|
|
self.check_output()
|
|
|
|
|
|
class TestElementwisePowGradOpInt(unittest.TestCase):
|
|
def setUp(self):
|
|
self.x = np.asarray([1, 3, 6])
|
|
self.y = np.asarray([1, 1, 1])
|
|
self.res = self.x**self.y
|
|
# dout = 1
|
|
self.grad_res = np.asarray([1, 1, 1])
|
|
# dx = dout * y * pow(x, y-1)
|
|
self.grad_x = self.grad_res * self.y * (self.x
|
|
**(self.y - 1)).astype("int")
|
|
# dy = dout * log(x) * pow(x, y)
|
|
self.grad_y = (self.grad_res * np.log(self.x) *
|
|
(self.x**self.y)).astype("int")
|
|
print(self.grad_res, self.grad_x, self.grad_y)
|
|
|
|
def test_grad(self):
|
|
places = [fluid.CPUPlace()]
|
|
if fluid.is_compiled_with_cuda():
|
|
places.append(fluid.CUDAPlace(0))
|
|
for place in places:
|
|
with fluid.dygraph.guard(place):
|
|
x = fluid.dygraph.to_variable(self.x, zero_copy=False)
|
|
y = fluid.dygraph.to_variable(self.y, zero_copy=False)
|
|
print(x, y)
|
|
x.stop_gradient = False
|
|
y.stop_gradient = False
|
|
res = x**y
|
|
res.backward()
|
|
self.assertTrue(np.array_equal(res.gradient(), self.grad_res))
|
|
self.assertTrue(np.array_equal(x.gradient(), self.grad_x))
|
|
self.assertTrue(np.array_equal(y.gradient(), self.grad_y))
|
|
|
|
|
|
if __name__ == '__main__':
|
|
unittest.main()
|