You can not select more than 25 topics
Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
243 lines
7.8 KiB
243 lines
7.8 KiB
# Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
|
|
#
|
|
# Licensed under the Apache License, Version 2.0 (the "License");
|
|
# you may not use this file except in compliance with the License.
|
|
# You may obtain a copy of the License at
|
|
#
|
|
# http://www.apache.org/licenses/LICENSE-2.0
|
|
#
|
|
# Unless required by applicable law or agreed to in writing, software
|
|
# distributed under the License is distributed on an "AS IS" BASIS,
|
|
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
# See the License for the specific language governing permissions and
|
|
# limitations under the License.
|
|
|
|
from __future__ import print_function
|
|
import unittest
|
|
import numpy as np
|
|
import paddle
|
|
from op_test import OpTest, skip_check_grad_ci
|
|
|
|
|
|
class TestElementwiseOp(OpTest):
|
|
def setUp(self):
|
|
self.op_type = "elementwise_sub"
|
|
self.inputs = {
|
|
'X': np.random.uniform(0.1, 1, [2, 3, 4, 5]).astype("float64"),
|
|
'Y': np.random.uniform(0.1, 1, [2, 3, 4, 5]).astype("float64")
|
|
}
|
|
self.outputs = {'Out': self.inputs['X'] - self.inputs['Y']}
|
|
|
|
def test_check_output(self):
|
|
self.check_output()
|
|
|
|
def test_check_grad_normal(self):
|
|
self.check_grad(['X', 'Y'], 'Out')
|
|
|
|
def test_check_grad_ingore_x(self):
|
|
self.check_grad(
|
|
['Y'], 'Out', max_relative_error=0.005, no_grad_set=set("X"))
|
|
|
|
def test_check_grad_ingore_y(self):
|
|
self.check_grad(
|
|
['X'], 'Out', max_relative_error=0.005, no_grad_set=set('Y'))
|
|
|
|
|
|
@skip_check_grad_ci(
|
|
reason="[skip shape check] Use y_shape(1) to test broadcast.")
|
|
class TestElementwiseSubOp_scalar(TestElementwiseOp):
|
|
def setUp(self):
|
|
self.op_type = "elementwise_sub"
|
|
self.inputs = {
|
|
'X': np.random.rand(10, 3, 4).astype(np.float64),
|
|
'Y': np.random.rand(1).astype(np.float64)
|
|
}
|
|
self.outputs = {'Out': self.inputs['X'] - self.inputs['Y']}
|
|
|
|
|
|
class TestElementwiseSubOp_Vector(TestElementwiseOp):
|
|
def setUp(self):
|
|
self.op_type = "elementwise_sub"
|
|
self.inputs = {
|
|
'X': np.random.random((100, )).astype("float64"),
|
|
'Y': np.random.random((100, )).astype("float64")
|
|
}
|
|
self.outputs = {'Out': self.inputs['X'] - self.inputs['Y']}
|
|
|
|
|
|
class TestElementwiseSubOp_broadcast_0(TestElementwiseOp):
|
|
def setUp(self):
|
|
self.op_type = "elementwise_sub"
|
|
self.inputs = {
|
|
'X': np.random.rand(100, 3, 2).astype(np.float64),
|
|
'Y': np.random.rand(100).astype(np.float64)
|
|
}
|
|
|
|
self.attrs = {'axis': 0}
|
|
self.outputs = {
|
|
'Out': self.inputs['X'] - self.inputs['Y'].reshape(100, 1, 1)
|
|
}
|
|
|
|
|
|
class TestElementwiseSubOp_broadcast_1(TestElementwiseOp):
|
|
def setUp(self):
|
|
self.op_type = "elementwise_sub"
|
|
self.inputs = {
|
|
'X': np.random.rand(2, 100, 3).astype(np.float64),
|
|
'Y': np.random.rand(100).astype(np.float64)
|
|
}
|
|
|
|
self.attrs = {'axis': 1}
|
|
self.outputs = {
|
|
'Out': self.inputs['X'] - self.inputs['Y'].reshape(1, 100, 1)
|
|
}
|
|
|
|
|
|
class TestElementwiseSubOp_broadcast_2(TestElementwiseOp):
|
|
def setUp(self):
|
|
self.op_type = "elementwise_sub"
|
|
self.inputs = {
|
|
'X': np.random.rand(2, 3, 100).astype(np.float64),
|
|
'Y': np.random.rand(100).astype(np.float64)
|
|
}
|
|
|
|
self.outputs = {
|
|
'Out': self.inputs['X'] - self.inputs['Y'].reshape(1, 1, 100)
|
|
}
|
|
|
|
|
|
class TestElementwiseSubOp_broadcast_3(TestElementwiseOp):
|
|
def setUp(self):
|
|
self.op_type = "elementwise_sub"
|
|
self.inputs = {
|
|
'X': np.random.rand(2, 10, 12, 3).astype(np.float64),
|
|
'Y': np.random.rand(10, 12).astype(np.float64)
|
|
}
|
|
|
|
self.attrs = {'axis': 1}
|
|
self.outputs = {
|
|
'Out': self.inputs['X'] - self.inputs['Y'].reshape(1, 10, 12, 1)
|
|
}
|
|
|
|
|
|
class TestElementwiseSubOp_broadcast_4(TestElementwiseOp):
|
|
def setUp(self):
|
|
self.op_type = "elementwise_sub"
|
|
self.inputs = {
|
|
'X': np.random.rand(2, 5, 3, 12).astype(np.float64),
|
|
'Y': np.random.rand(2, 5, 1, 12).astype(np.float64)
|
|
}
|
|
self.outputs = {'Out': self.inputs['X'] - self.inputs['Y']}
|
|
|
|
|
|
class TestElementwiseSubOp_commonuse_1(TestElementwiseOp):
|
|
def setUp(self):
|
|
self.op_type = "elementwise_sub"
|
|
self.inputs = {
|
|
'X': np.random.rand(2, 3, 100).astype(np.float64),
|
|
'Y': np.random.rand(1, 1, 100).astype(np.float64)
|
|
}
|
|
self.outputs = {'Out': self.inputs['X'] - self.inputs['Y']}
|
|
|
|
|
|
class TestElementwiseSubOp_commonuse_2(TestElementwiseOp):
|
|
def setUp(self):
|
|
self.op_type = "elementwise_sub"
|
|
self.inputs = {
|
|
'X': np.random.rand(10, 3, 1, 4).astype(np.float64),
|
|
'Y': np.random.rand(10, 1, 12, 1).astype(np.float64)
|
|
}
|
|
self.outputs = {'Out': self.inputs['X'] - self.inputs['Y']}
|
|
|
|
|
|
class TestElementwiseSubOp_xsize_lessthan_ysize(TestElementwiseOp):
|
|
def setUp(self):
|
|
self.op_type = "elementwise_sub"
|
|
self.inputs = {
|
|
'X': np.random.rand(10, 12).astype(np.float64),
|
|
'Y': np.random.rand(2, 3, 10, 12).astype(np.float64)
|
|
}
|
|
|
|
self.attrs = {'axis': 2}
|
|
|
|
self.outputs = {
|
|
'Out': self.inputs['X'].reshape(1, 1, 10, 12) - self.inputs['Y']
|
|
}
|
|
|
|
|
|
class TestComplexElementwiseSubOp(OpTest):
|
|
def setUp(self):
|
|
self.op_type = "elementwise_sub"
|
|
self.dtype = np.float64
|
|
self.shape = (2, 3, 4, 5)
|
|
self.init_input_output()
|
|
self.init_grad_input_output()
|
|
|
|
self.inputs = {
|
|
'X': OpTest.np_dtype_to_fluid_dtype(self.x),
|
|
'Y': OpTest.np_dtype_to_fluid_dtype(self.y)
|
|
}
|
|
self.attrs = {'axis': -1, 'use_mkldnn': False}
|
|
self.outputs = {'Out': self.out}
|
|
|
|
def init_base_dtype(self):
|
|
self.dtype = np.float64
|
|
|
|
def init_input_output(self):
|
|
self.x = np.random.random(self.shape).astype(
|
|
self.dtype) + 1J * np.random.random(self.shape).astype(self.dtype)
|
|
self.y = np.random.random(self.shape).astype(
|
|
self.dtype) + 1J * np.random.random(self.shape).astype(self.dtype)
|
|
self.out = self.x - self.y
|
|
|
|
def init_grad_input_output(self):
|
|
self.grad_out = np.ones(self.shape, self.dtype) + 1J * np.ones(
|
|
self.shape, self.dtype)
|
|
self.grad_x = self.grad_out
|
|
self.grad_y = -self.grad_out
|
|
|
|
def test_check_output(self):
|
|
self.check_output()
|
|
|
|
def test_check_grad_normal(self):
|
|
self.check_grad(
|
|
['X', 'Y'],
|
|
'Out',
|
|
user_defined_grads=[self.grad_x, self.grad_y],
|
|
user_defined_grad_outputs=[self.grad_out])
|
|
|
|
def test_check_grad_ingore_x(self):
|
|
self.check_grad(
|
|
['Y'],
|
|
'Out',
|
|
no_grad_set=set("X"),
|
|
user_defined_grads=[self.grad_y],
|
|
user_defined_grad_outputs=[self.grad_out])
|
|
|
|
def test_check_grad_ingore_y(self):
|
|
self.check_grad(
|
|
['X'],
|
|
'Out',
|
|
no_grad_set=set('Y'),
|
|
user_defined_grads=[self.grad_x],
|
|
user_defined_grad_outputs=[self.grad_out])
|
|
|
|
|
|
class TestRealComplexElementwiseSubOp(TestComplexElementwiseSubOp):
|
|
def init_input_output(self):
|
|
self.x = np.random.random(self.shape).astype(self.dtype)
|
|
self.y = np.random.random(self.shape).astype(
|
|
self.dtype) + 1J * np.random.random(self.shape).astype(self.dtype)
|
|
self.out = self.x - self.y
|
|
|
|
def init_grad_input_output(self):
|
|
self.grad_out = np.ones(self.shape, self.dtype) + 1J * np.ones(
|
|
self.shape, self.dtype)
|
|
self.grad_x = np.real(self.grad_out)
|
|
self.grad_y = -self.grad_out
|
|
|
|
|
|
if __name__ == '__main__':
|
|
paddle.enable_static()
|
|
unittest.main()
|