You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
Paddle/python/paddle/fluid/tests/unittests/test_ema.py

86 lines
3.3 KiB

# Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
from __future__ import print_function
import unittest
import numpy as np
import paddle.fluid as fluid
class TestExponentialMovingAverage(unittest.TestCase):
def setUp(self):
self._places = [fluid.CPUPlace()]
if fluid.core.is_compiled_with_cuda():
self._places.append(fluid.CUDAPlace(0))
self._ema_decay = 0.999
self._param_name = "fc.weight"
self._train_program = fluid.Program()
self._startup_prog = fluid.Program()
with fluid.program_guard(self._train_program, self._startup_prog):
with fluid.unique_name.guard():
data = fluid.data(name='x', shape=[-1, 5], dtype='float32')
hidden = fluid.layers.fc(input=data,
size=10,
param_attr=self._param_name)
cost = fluid.layers.mean(hidden)
self._test_program = fluid.default_main_program().clone(
for_test=True)
optimizer = fluid.optimizer.Adam(learning_rate=0.001)
optimizer.minimize(cost)
self._ema = fluid.optimizer.ExponentialMovingAverage(
self._ema_decay)
self._ema.update()
def train(self, place):
exe = fluid.Executor(place)
exe.run(self._startup_prog)
params = []
for pass_id in range(2):
for batch_id in range(3):
data = np.random.random(size=(10, 5)).astype('float32')
tmp_param = np.array(fluid.global_scope().find_var(
self._param_name).get_tensor())
exe.run(program=self._train_program, feed={'x': data})
tmp_param = np.array(fluid.global_scope().find_var(
self._param_name).get_tensor())
params.append(tmp_param)
with self._ema.apply(exe):
final_ema = np.array(fluid.global_scope().find_var(self._param_name)
.get_tensor())
data = np.random.random(size=(10, 5)).astype('float32')
exe.run(program=self._test_program, feed={'x': data})
return params, final_ema
def test_check_ema(self):
for place in self._places:
params, final_ema = self.train(place)
manu_ema = np.zeros_like(final_ema)
if len(params) > 0:
for param in params:
manu_ema = self._ema_decay * manu_ema + (1 - self._ema_decay
) * param
manu_ema = manu_ema / (1.0 - self._ema_decay**len(params))
self.assertTrue(np.allclose(manu_ema, final_ema))
if __name__ == '__main__':
unittest.main()