You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
Paddle/python/paddle/fluid/tests/unittests/test_empty_like_op.py

193 lines
6.0 KiB

# Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
from __future__ import print_function
import unittest
import numpy as np
import paddle
import paddle.fluid as fluid
from paddle.fluid.data_feeder import convert_dtype
import paddle.fluid.core as core
from paddle.static import program_guard, Program
class TestEmptyLikeAPICommon(unittest.TestCase):
def __check_out__(self, out):
data_type = convert_dtype(out.dtype)
self.assertEqual(data_type, self.dst_dtype,
'dtype should be %s, but get %s' %
(self.dst_dtype, data_type))
shape = out.shape
self.assertTupleEqual(shape, self.dst_shape,
'shape should be %s, but get %s' %
(self.dst_shape, shape))
if data_type in ['float32', 'float64', 'int32', 'int64']:
max_value = np.nanmax(out)
min_value = np.nanmin(out)
always_non_full_zero = max_value > min_value
always_full_zero = max_value == 0.0 and min_value == 0.0
self.assertTrue(always_full_zero or always_non_full_zero,
'always_full_zero or always_non_full_zero.')
elif data_type in ['bool']:
total_num = out.size
true_num = np.sum(out == True)
false_num = np.sum(out == False)
self.assertTrue(total_num == true_num + false_num,
'The value should always be True or False.')
else:
self.assertTrue(False, 'invalid data type')
class TestEmptyLikeAPI(TestEmptyLikeAPICommon):
def setUp(self):
self.init_config()
def test_dygraph_api_out(self):
paddle.disable_static()
out = paddle.empty_like(self.x, self.dtype)
self.__check_out__(out.numpy())
paddle.enable_static()
def init_config(self):
self.x = np.random.random((200, 3)).astype("float32")
self.dtype = self.x.dtype
self.dst_shape = self.x.shape
self.dst_dtype = self.dtype
class TestEmptyLikeAPI2(TestEmptyLikeAPI):
def init_config(self):
self.x = np.random.random((200, 3)).astype("float64")
self.dtype = self.x.dtype
self.dst_shape = self.x.shape
self.dst_dtype = self.dtype
class TestEmptyLikeAPI3(TestEmptyLikeAPI):
def init_config(self):
self.x = np.random.random((200, 3)).astype("int")
self.dtype = self.x.dtype
self.dst_shape = self.x.shape
self.dst_dtype = self.dtype
class TestEmptyLikeAPI4(TestEmptyLikeAPI):
def init_config(self):
self.x = np.random.random((200, 3)).astype("int64")
self.dtype = self.x.dtype
self.dst_shape = self.x.shape
self.dst_dtype = self.dtype
class TestEmptyLikeAPI5(TestEmptyLikeAPI):
def init_config(self):
self.x = np.random.random((200, 3)).astype("bool")
self.dtype = self.x.dtype
self.dst_shape = self.x.shape
self.dst_dtype = self.dtype
class TestEmptyLikeAPI6(TestEmptyLikeAPI):
def init_config(self):
self.x = np.random.random((200, 3)).astype("float64")
self.dtype = "float32"
self.dst_shape = self.x.shape
self.dst_dtype = self.dtype
class TestEmptyLikeAPI7(TestEmptyLikeAPI):
def init_config(self):
self.x = np.random.random((200, 3)).astype("int")
self.dtype = "float32"
self.dst_shape = self.x.shape
self.dst_dtype = self.dtype
class TestEmptyLikeAPI8(TestEmptyLikeAPI):
def init_config(self):
self.x = np.random.random((200, 3)).astype("int64")
self.dtype = "float32"
self.dst_shape = self.x.shape
self.dst_dtype = self.dtype
class TestEmptyLikeAPI9(TestEmptyLikeAPI):
def init_config(self):
self.x = np.random.random((200, 3)).astype("bool")
self.dtype = "float32"
self.dst_shape = self.x.shape
self.dst_dtype = self.dtype
class TestEmptyLikeAPI10(TestEmptyLikeAPI):
def init_config(self):
self.x = np.random.random((200, 3)).astype("float32")
self.dtype = "bool"
self.dst_shape = self.x.shape
self.dst_dtype = self.dtype
class TestEmptyLikeAPI_Static(TestEmptyLikeAPICommon):
def setUp(self):
self.init_config()
def test_static_graph(self):
dtype = 'float32'
train_program = Program()
startup_program = Program()
with program_guard(train_program, startup_program):
x = np.random.random(self.x_shape).astype(dtype)
data_x = paddle.static.data(
'x', shape=self.data_x_shape, dtype=dtype)
out = paddle.empty_like(data_x)
place = paddle.CUDAPlace(0) if core.is_compiled_with_cuda(
) else paddle.CPUPlace()
exe = paddle.static.Executor(place)
res = exe.run(train_program, feed={'x': x}, fetch_list=[out])
self.dst_dtype = dtype
self.dst_shape = x.shape
self.__check_out__(res[0])
def init_config(self):
self.x_shape = (200, 3)
self.data_x_shape = [200, 3]
class TestEmptyLikeAPI_Static2(TestEmptyLikeAPI_Static):
def init_config(self):
self.x_shape = (3, 200, 3)
self.data_x_shape = [-1, 200, 3]
class TestEmptyError(unittest.TestCase):
def test_attr(self):
def test_dtype():
x = np.random.random((200, 3)).astype("float64")
dtype = 'uint8'
result = paddle.empty_like(x, dtype=dtype)
self.assertRaises(TypeError, test_dtype)
if __name__ == '__main__':
unittest.main()