You can not select more than 25 topics
Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
177 lines
5.7 KiB
177 lines
5.7 KiB
# Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
|
|
#
|
|
# Licensed under the Apache License, Version 2.0 (the "License");
|
|
# you may not use this file except in compliance with the License.
|
|
# You may obtain a copy of the License at
|
|
#
|
|
# http://www.apache.org/licenses/LICENSE-2.0
|
|
#
|
|
# Unless required by applicable law or agreed to in writing, software
|
|
# distributed under the License is distributed on an "AS IS" BASIS,
|
|
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
# See the License for the specific language governing permissions and
|
|
# limitations under the License.
|
|
|
|
from __future__ import print_function
|
|
|
|
import unittest
|
|
import numpy as np
|
|
import math
|
|
from op_test import OpTest
|
|
|
|
|
|
def quantize_max_abs(x, max_range):
|
|
scale = np.max(np.abs(x).flatten())
|
|
y = np.round(x / scale * max_range)
|
|
return y, scale
|
|
|
|
|
|
def dequantize_max_abs(x, scale, max_range):
|
|
y = (scale / max_range) * x
|
|
return y
|
|
|
|
|
|
def channel_wise_quantize_max_abs(x, quant_bit=8, quant_axis=0):
|
|
assert quant_axis in [0, 1], "The quant_axis should be 0 or 1."
|
|
scales = []
|
|
y = x.copy()
|
|
max_range = math.pow(2, quant_bit - 1) - 1
|
|
if quant_axis == 0:
|
|
for i in range(x.shape[0]):
|
|
scale = np.max(np.abs(x[i])).astype("float32")
|
|
scales.append(scale)
|
|
y[i] = np.round(x[i] * max_range / scale)
|
|
elif quant_axis == 1:
|
|
for i in range(x.shape[1]):
|
|
scale = np.max(np.abs(x[:, i])).astype("float32")
|
|
scales.append(scale)
|
|
y[:, i] = np.round(x[:, i] * max_range / scale)
|
|
return y, scales
|
|
|
|
|
|
def channel_wise_dequantize_max_abs(x,
|
|
scales,
|
|
quant_bits,
|
|
quant_axis,
|
|
activation_scale=None):
|
|
assert quant_axis in [0, 1], "The quant_axis should be 0 or 1."
|
|
|
|
if isinstance(quant_bits, list):
|
|
max_range = math.pow(2, quant_bits[0] - 1) - 1
|
|
else:
|
|
max_range = math.pow(2, quant_bits - 1) - 1
|
|
y = x.copy()
|
|
if quant_axis == 0:
|
|
for i in range(x.shape[0]):
|
|
y[i] = x[i] * scales[i] / max_range
|
|
elif quant_axis == 1:
|
|
for i in range(x.shape[1]):
|
|
y[:, i] = x[:, i] * scales[i] / max_range
|
|
|
|
if activation_scale is not None:
|
|
y = y * activation_scale / (math.pow(2, quant_bits[1] - 1) - 1)
|
|
return y
|
|
|
|
|
|
class TestFakeChannelWiseDequantizeMaxAbsOpTwoScales(OpTest):
|
|
def set_args(self):
|
|
self.quant_bits = [8, 8]
|
|
self.data_type = "float32"
|
|
self.activation_scale = 0.7861
|
|
|
|
def setUp(self):
|
|
self.set_args()
|
|
self.op_type = "fake_channel_wise_dequantize_max_abs"
|
|
x = np.random.randn(4, 3, 64, 64).astype(self.data_type)
|
|
yq, scales = channel_wise_quantize_max_abs(x, self.quant_bits[0], 1)
|
|
ydq = channel_wise_dequantize_max_abs(yq, scales, self.quant_bits, 1,
|
|
self.activation_scale)
|
|
|
|
self.inputs = {
|
|
'X': yq,
|
|
'Scales': [("scales0", np.array(scales).astype(self.data_type)),
|
|
("scales1", np.array(
|
|
[self.activation_scale]).astype(self.data_type))]
|
|
}
|
|
self.attrs = {'quant_bits': self.quant_bits}
|
|
self.outputs = {'Out': ydq}
|
|
|
|
def test_check_output(self):
|
|
self.check_output()
|
|
|
|
|
|
class TestFakeChannelWiseDequantizeMaxAbsOpOneScale(OpTest):
|
|
def set_args(self):
|
|
self.quant_bits = [8]
|
|
self.data_type = "float32"
|
|
self.quant_axis = 0
|
|
|
|
def setUp(self):
|
|
self.set_args()
|
|
self.op_type = "fake_channel_wise_dequantize_max_abs"
|
|
x = np.random.randn(4, 3, 64, 64).astype(self.data_type)
|
|
yq, scales = channel_wise_quantize_max_abs(x, self.quant_bits[0],
|
|
self.quant_axis)
|
|
ydq = channel_wise_dequantize_max_abs(yq, scales, self.quant_bits,
|
|
self.quant_axis)
|
|
|
|
self.inputs = {
|
|
'X': yq,
|
|
'Scales': [("scales0", np.array(scales).astype(self.data_type))]
|
|
}
|
|
self.attrs = {
|
|
'quant_bits': self.quant_bits,
|
|
'quant_axis': self.quant_axis
|
|
}
|
|
self.outputs = {'Out': ydq}
|
|
|
|
def test_check_output(self):
|
|
self.check_output()
|
|
|
|
|
|
class TestFakeChannelWiseDequantizeMaxAbsOpOneScale1(
|
|
TestFakeChannelWiseDequantizeMaxAbsOpOneScale):
|
|
def set_args(self):
|
|
self.quant_bits = [8]
|
|
self.data_type = "float32"
|
|
self.quant_axis = 1
|
|
|
|
|
|
class TestFakeDequantizeMaxAbsOp(OpTest):
|
|
def set_args(self):
|
|
self.num_bits = 8
|
|
self.max_range = math.pow(2, self.num_bits - 1) - 1
|
|
self.data_type = "float32"
|
|
|
|
def setUp(self):
|
|
self.set_args()
|
|
self.op_type = "fake_dequantize_max_abs"
|
|
x = np.random.randn(31, 65).astype(self.data_type)
|
|
yq, scale = quantize_max_abs(x, self.max_range)
|
|
ydq = dequantize_max_abs(yq, scale, self.max_range)
|
|
|
|
self.inputs = {'X': yq, 'Scale': np.array(scale).astype(self.data_type)}
|
|
self.attrs = {'max_range': self.max_range}
|
|
self.outputs = {'Out': ydq}
|
|
|
|
def test_check_output(self):
|
|
self.check_output()
|
|
|
|
|
|
class TestFakeDequantizeMaxAbsOpDouble(TestFakeDequantizeMaxAbsOp):
|
|
def set_args(self):
|
|
self.num_bits = 8
|
|
self.max_range = math.pow(2, self.num_bits - 1) - 1
|
|
self.data_type = "float64"
|
|
|
|
|
|
class TestFakeDequantizeMaxAbsOp5Bits(TestFakeDequantizeMaxAbsOp):
|
|
def set_args(self):
|
|
self.num_bits = 5
|
|
self.max_range = math.pow(2, self.num_bits - 1) - 1
|
|
self.data_type = "float32"
|
|
|
|
|
|
if __name__ == "__main__":
|
|
unittest.main()
|