You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
Paddle/python/paddle/fluid/tests/unittests/test_fake_dequantize_op.py

177 lines
5.7 KiB

# Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
from __future__ import print_function
import unittest
import numpy as np
import math
from op_test import OpTest
def quantize_max_abs(x, max_range):
scale = np.max(np.abs(x).flatten())
y = np.round(x / scale * max_range)
return y, scale
def dequantize_max_abs(x, scale, max_range):
y = (scale / max_range) * x
return y
def channel_wise_quantize_max_abs(x, quant_bit=8, quant_axis=0):
assert quant_axis in [0, 1], "The quant_axis should be 0 or 1."
scales = []
y = x.copy()
max_range = math.pow(2, quant_bit - 1) - 1
if quant_axis == 0:
for i in range(x.shape[0]):
scale = np.max(np.abs(x[i])).astype("float32")
scales.append(scale)
y[i] = np.round(x[i] * max_range / scale)
elif quant_axis == 1:
for i in range(x.shape[1]):
scale = np.max(np.abs(x[:, i])).astype("float32")
scales.append(scale)
y[:, i] = np.round(x[:, i] * max_range / scale)
return y, scales
def channel_wise_dequantize_max_abs(x,
scales,
quant_bits,
quant_axis,
activation_scale=None):
assert quant_axis in [0, 1], "The quant_axis should be 0 or 1."
if isinstance(quant_bits, list):
max_range = math.pow(2, quant_bits[0] - 1) - 1
else:
max_range = math.pow(2, quant_bits - 1) - 1
y = x.copy()
if quant_axis == 0:
for i in range(x.shape[0]):
y[i] = x[i] * scales[i] / max_range
elif quant_axis == 1:
for i in range(x.shape[1]):
y[:, i] = x[:, i] * scales[i] / max_range
if activation_scale is not None:
y = y * activation_scale / (math.pow(2, quant_bits[1] - 1) - 1)
return y
class TestFakeChannelWiseDequantizeMaxAbsOpTwoScales(OpTest):
def set_args(self):
self.quant_bits = [8, 8]
self.data_type = "float32"
self.activation_scale = 0.7861
def setUp(self):
self.set_args()
self.op_type = "fake_channel_wise_dequantize_max_abs"
x = np.random.randn(4, 3, 64, 64).astype(self.data_type)
yq, scales = channel_wise_quantize_max_abs(x, self.quant_bits[0], 1)
ydq = channel_wise_dequantize_max_abs(yq, scales, self.quant_bits, 1,
self.activation_scale)
self.inputs = {
'X': yq,
'Scales': [("scales0", np.array(scales).astype(self.data_type)),
("scales1", np.array(
[self.activation_scale]).astype(self.data_type))]
}
self.attrs = {'quant_bits': self.quant_bits}
self.outputs = {'Out': ydq}
def test_check_output(self):
self.check_output()
class TestFakeChannelWiseDequantizeMaxAbsOpOneScale(OpTest):
def set_args(self):
self.quant_bits = [8]
self.data_type = "float32"
self.quant_axis = 0
def setUp(self):
self.set_args()
self.op_type = "fake_channel_wise_dequantize_max_abs"
x = np.random.randn(4, 3, 64, 64).astype(self.data_type)
yq, scales = channel_wise_quantize_max_abs(x, self.quant_bits[0],
self.quant_axis)
ydq = channel_wise_dequantize_max_abs(yq, scales, self.quant_bits,
self.quant_axis)
self.inputs = {
'X': yq,
'Scales': [("scales0", np.array(scales).astype(self.data_type))]
}
self.attrs = {
'quant_bits': self.quant_bits,
'quant_axis': self.quant_axis
}
self.outputs = {'Out': ydq}
def test_check_output(self):
self.check_output()
class TestFakeChannelWiseDequantizeMaxAbsOpOneScale1(
TestFakeChannelWiseDequantizeMaxAbsOpOneScale):
def set_args(self):
self.quant_bits = [8]
self.data_type = "float32"
self.quant_axis = 1
class TestFakeDequantizeMaxAbsOp(OpTest):
def set_args(self):
self.num_bits = 8
self.max_range = math.pow(2, self.num_bits - 1) - 1
self.data_type = "float32"
def setUp(self):
self.set_args()
self.op_type = "fake_dequantize_max_abs"
x = np.random.randn(31, 65).astype(self.data_type)
yq, scale = quantize_max_abs(x, self.max_range)
ydq = dequantize_max_abs(yq, scale, self.max_range)
self.inputs = {'X': yq, 'Scale': np.array(scale).astype(self.data_type)}
self.attrs = {'max_range': self.max_range}
self.outputs = {'Out': ydq}
def test_check_output(self):
self.check_output()
class TestFakeDequantizeMaxAbsOpDouble(TestFakeDequantizeMaxAbsOp):
def set_args(self):
self.num_bits = 8
self.max_range = math.pow(2, self.num_bits - 1) - 1
self.data_type = "float64"
class TestFakeDequantizeMaxAbsOp5Bits(TestFakeDequantizeMaxAbsOp):
def set_args(self):
self.num_bits = 5
self.max_range = math.pow(2, self.num_bits - 1) - 1
self.data_type = "float32"
if __name__ == "__main__":
unittest.main()