You can not select more than 25 topics
Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
198 lines
5.9 KiB
198 lines
5.9 KiB
# Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
|
|
#
|
|
# Licensed under the Apache License, Version 2.0 (the "License");
|
|
# you may not use this file except in compliance with the License.
|
|
# You may obtain a copy of the License at
|
|
#
|
|
# http://www.apache.org/licenses/LICENSE-2.0
|
|
#
|
|
# Unless required by applicable law or agreed to in writing, software
|
|
# distributed under the License is distributed on an "AS IS" BASIS,
|
|
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
# See the License for the specific language governing permissions and
|
|
# limitations under the License.
|
|
|
|
import unittest
|
|
import paddle
|
|
import numpy as np
|
|
from op_test import OpTest
|
|
import paddle.fluid as fluid
|
|
from paddle.fluid import Program, program_guard, core
|
|
|
|
SEED = 2020
|
|
|
|
|
|
def fc_refer(matrix, with_bias, with_relu=False):
|
|
in_n, in_c, in_h, in_w = matrix.input.shape
|
|
w_i, w_o = matrix.weights.shape
|
|
|
|
x_data = np.reshape(matrix.input, [in_n, in_c * in_h * in_w])
|
|
w_data = np.reshape(matrix.weights, [w_i, w_o])
|
|
b_data = np.reshape(matrix.bias, [1, w_o])
|
|
result = None
|
|
|
|
if with_bias:
|
|
result = np.dot(x_data, w_data) + b_data
|
|
else:
|
|
result = np.dot(x_data, w_data)
|
|
|
|
if with_relu:
|
|
return np.maximum(result, 0)
|
|
else:
|
|
return result
|
|
|
|
|
|
class MatrixGenerate:
|
|
def __init__(self, mb, ic, oc, h, w, bias_dims=2):
|
|
self.input = np.random.random((mb, ic, h, w)).astype("float32")
|
|
self.weights = np.random.random((ic * h * w, oc)).astype("float32")
|
|
if bias_dims == 2:
|
|
self.bias = np.random.random((1, oc)).astype("float32")
|
|
else:
|
|
self.bias = np.random.random((oc)).astype("float32")
|
|
|
|
|
|
class TestFCOp(OpTest):
|
|
def config(self):
|
|
self.with_bias = True
|
|
self.with_relu = True
|
|
self.matrix = MatrixGenerate(1, 10, 15, 3, 3, 2)
|
|
|
|
def setUp(self):
|
|
self.op_type = "fc"
|
|
self.config()
|
|
|
|
if self.with_bias:
|
|
self.inputs = {
|
|
'Input': self.matrix.input,
|
|
'W': self.matrix.weights,
|
|
'Bias': self.matrix.bias
|
|
}
|
|
else:
|
|
self.inputs = {'Input': self.matrix.input, 'W': self.matrix.weights}
|
|
|
|
if self.with_relu:
|
|
activation_type = "relu"
|
|
else:
|
|
activation_type = ""
|
|
self.attrs = {'use_mkldnn': False, 'activation_type': activation_type}
|
|
|
|
self.outputs = {
|
|
'Out': fc_refer(self.matrix, self.with_bias, self.with_relu)
|
|
}
|
|
|
|
def test_check_output(self):
|
|
self.check_output()
|
|
|
|
|
|
class TestFCOpNoBias1(TestFCOp):
|
|
def config(self):
|
|
self.with_bias = False
|
|
self.with_relu = False
|
|
self.matrix = MatrixGenerate(2, 8, 10, 1, 1, 2)
|
|
|
|
|
|
class TestFCOpNoBias2(TestFCOp):
|
|
def config(self):
|
|
self.with_bias = False
|
|
self.with_relu = False
|
|
self.matrix = MatrixGenerate(4, 5, 6, 2, 2, 1)
|
|
|
|
|
|
class TestFCOpNoBias4(TestFCOp):
|
|
def config(self):
|
|
self.with_bias = False
|
|
self.with_relu = False
|
|
self.matrix = MatrixGenerate(1, 32, 64, 3, 3, 1)
|
|
|
|
|
|
class TestFCOpWithBias1(TestFCOp):
|
|
def config(self):
|
|
self.with_bias = True
|
|
self.with_relu = False
|
|
self.matrix = MatrixGenerate(3, 8, 10, 2, 1, 2)
|
|
|
|
|
|
class TestFCOpWithBias2(TestFCOp):
|
|
def config(self):
|
|
self.with_bias = True
|
|
self.with_relu = True
|
|
self.matrix = MatrixGenerate(4, 5, 6, 2, 2, 1)
|
|
|
|
|
|
class TestFCOpWithBias3(TestFCOp):
|
|
def config(self):
|
|
self.with_bias = True
|
|
self.with_relu = True
|
|
self.matrix = MatrixGenerate(1, 64, 32, 3, 3, 1)
|
|
|
|
|
|
class TestFCOpWithPadding(TestFCOp):
|
|
def config(self):
|
|
self.with_bias = True
|
|
self.with_relu = True
|
|
self.matrix = MatrixGenerate(1, 4, 3, 128, 128, 2)
|
|
|
|
|
|
class TestFcOp_NumFlattenDims_NegOne(unittest.TestCase):
|
|
def test_api(self):
|
|
def run_program(num_flatten_dims):
|
|
paddle.seed(SEED)
|
|
startup_program = Program()
|
|
main_program = Program()
|
|
|
|
with program_guard(main_program, startup_program):
|
|
input = np.random.random([2, 2, 25]).astype("float32")
|
|
x = fluid.layers.data(
|
|
name="x",
|
|
shape=[2, 2, 25],
|
|
append_batch_size=False,
|
|
dtype="float32")
|
|
|
|
out = paddle.static.nn.fc(x=x,
|
|
size=1,
|
|
num_flatten_dims=num_flatten_dims)
|
|
|
|
place = fluid.CPUPlace() if not core.is_compiled_with_cuda(
|
|
) else fluid.CUDAPlace(0)
|
|
exe = fluid.Executor(place=place)
|
|
exe.run(startup_program)
|
|
out = exe.run(main_program, feed={"x": input}, fetch_list=[out])
|
|
|
|
res_1 = run_program(-1)
|
|
res_2 = run_program(2)
|
|
self.assertTrue(np.array_equal(res_1, res_2))
|
|
|
|
|
|
class TestFCOpError(unittest.TestCase):
|
|
def test_errors(self):
|
|
with program_guard(Program(), Program()):
|
|
input_data = np.random.random((2, 4)).astype("float32")
|
|
|
|
def test_Variable():
|
|
# the input type must be Variable
|
|
fluid.layers.fc(input=input_data, size=1)
|
|
|
|
self.assertRaises(TypeError, test_Variable)
|
|
|
|
def test_input_list():
|
|
# each of input(list) must be Variable
|
|
fluid.layers.fc(input=[input_data], size=1)
|
|
|
|
self.assertRaises(TypeError, test_input_list)
|
|
|
|
def test_type():
|
|
# dtype must be float32 or float64
|
|
x2 = fluid.layers.data(name='x2', shape=[4], dtype='int32')
|
|
fluid.layers.fc(input=x2, size=1)
|
|
|
|
self.assertRaises(TypeError, test_type)
|
|
|
|
# The input dtype of fc can be float16 in GPU, test for warning
|
|
x3 = fluid.layers.data(name='x3', shape=[4], dtype='float16')
|
|
fluid.layers.fc(input=x3, size=1)
|
|
|
|
|
|
if __name__ == "__main__":
|
|
unittest.main()
|