You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
Paddle/python/paddle/fluid/tests/unittests/test_fetch_unmerged.py

122 lines
4.7 KiB

# Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import os
import unittest
import random
import numpy as np
import paddle.fluid as fluid
import six
import paddle
os.environ["CPU_NUM"] = "2"
class TestFetchUnmerged(unittest.TestCase):
def conv_net(self, img, label):
conv_pool_1 = fluid.nets.simple_img_conv_pool(
input=img,
filter_size=5,
num_filters=8,
pool_size=2,
pool_stride=2,
pool_type='max',
act="relu")
conv_pool_1 = fluid.layers.batch_norm(conv_pool_1)
conv_pool_2 = fluid.nets.simple_img_conv_pool(
input=conv_pool_1,
filter_size=5,
num_filters=16,
pool_size=2,
pool_stride=2,
pool_type='avg',
act="relu")
hidden = fluid.layers.fc(input=conv_pool_2, size=32, act='relu')
prediction = fluid.layers.fc(input=hidden, size=10, act='softmax')
loss = fluid.layers.cross_entropy(input=prediction, label=label)
avg_loss = fluid.layers.mean(loss)
return avg_loss, prediction
def build_program(self, main, startup, is_test):
with fluid.unique_name.guard():
with fluid.program_guard(main, startup):
img = fluid.layers.data(
name='image', shape=[1, 28, 28], dtype='float32')
label = fluid.layers.data(
name='label', shape=[1], dtype='int64')
loss, prediction = self.conv_net(img, label)
if not is_test:
opt = fluid.optimizer.Adam(learning_rate=0.001)
opt.minimize(loss)
return [img, label], loss, prediction
def fetch_unmerged(self, use_cuda=True):
main_program = fluid.Program()
startup_program = fluid.Program()
feeds, loss, prediction = self.build_program(main_program,
startup_program, False)
place = fluid.CUDAPlace(0) if use_cuda else fluid.CPUPlace()
exe = fluid.Executor(place)
exe.run(startup_program)
build_strategy = fluid.BuildStrategy()
binary = fluid.CompiledProgram(main_program).with_data_parallel(
loss_name=loss.name, build_strategy=build_strategy)
iters = 2
batch_size = 16
train_reader = paddle.batch(
paddle.reader.shuffle(
paddle.dataset.mnist.train(), buf_size=500),
batch_size=batch_size)
feeder = fluid.DataFeeder(feed_list=feeds, place=place)
device_num = fluid.core.get_cuda_device_count() if use_cuda else 2
for _ in range(iters):
data = next(train_reader())
loss_v, prediction_v = exe.run(binary,
feed=feeder.feed(data),
fetch_list=[loss, prediction],
return_merged=False)
self.assertEqual(np.array(loss_v).shape, (device_num, 1))
self.assertEqual(
np.array(prediction_v).shape,
(device_num, batch_size / device_num, 10))
for _ in range(iters):
data = next(train_reader())
loss_v, prediction_v = exe.run(binary,
feed=feeder.feed(data),
fetch_list=[loss, prediction],
return_merged=True)
self.assertEqual(np.array(loss_v).shape, (device_num, ))
self.assertEqual(np.array(prediction_v).shape, (batch_size, 10))
def test_fetch_unmerged(self):
if fluid.core.is_compiled_with_cuda():
self.fetch_unmerged(use_cuda=True)
self.fetch_unmerged(use_cuda=False)
def test_fetch_unmerged_parallel_graph(self):
fluid.core.globals()['FLAGS_enable_parallel_graph'] = True
if fluid.core.is_compiled_with_cuda():
self.fetch_unmerged(use_cuda=True)
self.fetch_unmerged(use_cuda=False)
fluid.core.globals()['FLAGS_enable_parallel_graph'] = False
if __name__ == '__main__':
unittest.main()