You can not select more than 25 topics
Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
93 lines
2.7 KiB
93 lines
2.7 KiB
# Copyright (c) 2019 PaddlePaddle Authors. All Rights Reserved.
|
|
#
|
|
# Licensed under the Apache License, Version 2.0 (the "License");
|
|
# you may not use this file except in compliance with the License.
|
|
# You may obtain a copy of the License at
|
|
#
|
|
# http://www.apache.org/licenses/LICENSE-2.0
|
|
#
|
|
# Unless required by applicable law or agreed to in writing, software
|
|
# distributed under the License is distributed on an "AS IS" BASIS,
|
|
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
# See the License for the specific language governing permissions and
|
|
# limitations under the License.
|
|
|
|
from __future__ import print_function
|
|
|
|
import unittest
|
|
import numpy as np
|
|
from op_test import OpTest
|
|
import paddle.fluid.core as core
|
|
from paddle.fluid.op import Operator
|
|
|
|
|
|
class TestFillOp1(OpTest):
|
|
def setUp(self):
|
|
self.op_type = "fill"
|
|
val = np.random.random(size=[100, 200])
|
|
self.inputs = {}
|
|
self.attrs = {
|
|
'value': val.flatten().tolist(),
|
|
'shape': [100, 200],
|
|
'dtype': int(core.VarDesc.VarType.FP64),
|
|
'force_cpu': False
|
|
}
|
|
self.outputs = {'Out': val.astype('float64')}
|
|
|
|
def test_check_output(self):
|
|
self.check_output()
|
|
|
|
|
|
class TestFillOp2(OpTest):
|
|
def setUp(self):
|
|
self.op_type = "fill"
|
|
val = np.random.random(size=[100, 200])
|
|
self.inputs = {}
|
|
self.attrs = {
|
|
'value': val.flatten().tolist(),
|
|
'shape': [100, 200],
|
|
'dtype': int(core.VarDesc.VarType.FP64),
|
|
'force_cpu': True
|
|
}
|
|
self.outputs = {'Out': val.astype('float64')}
|
|
|
|
def test_check_output(self):
|
|
self.check_output()
|
|
|
|
|
|
class TestFillOp3(unittest.TestCase):
|
|
def check_with_place(self, place, f_cpu):
|
|
scope = core.Scope()
|
|
# create Out Variable
|
|
out = scope.var('Out').get_tensor()
|
|
|
|
# create and run fill_op operator
|
|
val = np.random.random(size=[300, 200])
|
|
fill_op = Operator(
|
|
"fill",
|
|
value=val.flatten(),
|
|
shape=[300, 200],
|
|
dtype=int(core.VarDesc.VarType.FP32),
|
|
force_cpu=f_cpu,
|
|
Out='Out')
|
|
fill_op.run(scope, place)
|
|
|
|
# get result from Out
|
|
result_array = np.array(out)
|
|
full_array = np.array(val, 'float32')
|
|
|
|
self.assertTrue(np.array_equal(result_array, full_array))
|
|
|
|
def test_fill_op(self):
|
|
places = [core.CPUPlace()]
|
|
if core.is_compiled_with_cuda():
|
|
places.append(core.CUDAPlace(0))
|
|
|
|
for place in places:
|
|
self.check_with_place(place, True)
|
|
self.check_with_place(place, False)
|
|
|
|
|
|
if __name__ == '__main__':
|
|
unittest.main()
|