You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
Paddle/python/paddle/fluid/tests/unittests/test_fleet_rolemaker_3.py

96 lines
3.7 KiB

# Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
"""Test cloud role maker."""
from __future__ import print_function
import os
import unittest
import paddle.fluid.incubate.fleet.base.role_maker as role_maker
class TestCloudRoleMaker(unittest.TestCase):
"""
Test cases for PaddleCloudRoleMaker.
"""
def setUp(self):
"""Set up, set envs."""
os.environ["PADDLE_TRAINERS_NUM"] = "2"
os.environ[
"PADDLE_PSERVERS_IP_PORT_LIST"] = "127.0.0.1:36001,127.0.0.2:36001"
def test_pslib_1(self):
"""Test cases for pslib."""
import paddle.fluid as fluid
from paddle.fluid.incubate.fleet.parameter_server.pslib import fleet
from paddle.fluid.incubate.fleet.parameter_server.pslib import PSLib
from paddle.fluid.incubate.fleet.base.role_maker import GeneralRoleMaker
os.environ["POD_IP"] = "127.0.0.1"
os.environ["PADDLE_PORT"] = "36001"
os.environ["TRAINING_ROLE"] = "TRAINER"
os.environ["PADDLE_TRAINER_ENDPOINTS"] = "127.0.0.1:36001"
os.environ["PADDLE_PSERVERS_IP_PORT_LIST"] = "127.0.0.1:36002"
os.environ["PADDLE_TRAINER_ID"] = "0"
role_maker = GeneralRoleMaker(
init_timeout_seconds=100,
run_timeout_seconds=100,
http_ip_port="127.0.0.1:36003")
#role_maker.generate_role()
place = fluid.CPUPlace()
exe = fluid.Executor(place)
#fleet.init(role_maker)
train_program = fluid.Program()
startup_program = fluid.Program()
scope = fluid.Scope()
with fluid.program_guard(train_program, startup_program):
show = fluid.layers.data(name="show", shape=[-1, 1], \
dtype="float32", lod_level=1, append_batch_size=False)
fc = fluid.layers.fc(input=show, size=1, act=None)
label = fluid.layers.data(name="click", shape=[-1, 1], \
dtype="int64", lod_level=1, append_batch_size=False)
label_cast = fluid.layers.cast(label, dtype='float32')
cost = fluid.layers.log_loss(fc, label_cast)
try:
adam = fluid.optimizer.Adam(learning_rate=0.000005)
adam = fleet.distributed_optimizer(adam)
adam.minimize([cost], [scope])
fleet.run_server()
http_server_d = {}
http_server_d["running"] = False
size_d = {}
role_maker._GeneralRoleMaker__start_kv_server(http_server_d, size_d)
except:
print("do not support pslib test, skip")
return
from paddle.fluid.incubate.fleet.base.role_maker import MockBarrier
mb = MockBarrier()
mb.barrier()
mb.barrier_all()
mb.all_reduce(1)
mb.all_gather(1)
os.environ["POD_IP"] = "127.0.0.1"
os.environ["PADDLE_PORT"] = "36005"
os.environ["TRAINING_ROLE"] = "TRAINER"
os.environ["PADDLE_TRAINER_ENDPOINTS"] = "127.0.0.1:36005"
os.environ["PADDLE_PSERVERS_IP_PORT_LIST"] = "127.0.0.1:36006"
os.environ["PADDLE_IS_BARRIER_ALL_ROLE"] = "0"
role_maker = GeneralRoleMaker(path="test_mock1")
role_maker.generate_role()
if __name__ == "__main__":
unittest.main()